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Abstract
This paper studies the fundamental problem of
learning energy-based model (EBM) in the latent
space of the generator model. Learning such prior
model typically requires running costly Markov
Chain Monte Carlo (MCMC). Instead, we pro-
pose to use noise contrastive estimation (NCE)
to discriminatively learn the EBM through den-
sity ratio estimation between the latent prior den-
sity and latent posterior density. However, the
NCE typically fails to accurately estimate such
density ratio given large gap between two densi-
ties. To effectively tackle this issue and further
learn more expressive prior model, we develop
the adaptive multi-stage density ratio estimation
which breaks the estimation into multiple stages
and learn different stages of density ratio sequen-
tially and adaptively. The latent prior model can
be gradually learned using ratio estimated in pre-
vious stage so that the final latent space EBM
prior can be naturally formed by product of ratios
in different stages. The proposed method enables
informative and much sharper prior than exist-
ing baselines, and can be trained efficiently. Our
experiments demonstrate strong performances in
terms of image generation and reconstruction as
well as anomaly detection.

1. Introduction
Deep generative model provides a powerful framework
for representing complex data distributions and have seen
many successful applications in image and video synthe-
sis (Karras et al., 2019; Saito et al., 2020), representation
learning (Oord et al., 2017) as well as unsupervised or
semi-supervised learning (Izmailov et al., 2020; Pang et al.,
2020b). Such model, referred to as generator model, usu-
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ally consists of low-dimensional latent variables that follow
non-informative prior distribution, and a top-down network
that maps such latent vector to the observed example. The
informative prior model in the latent space (Pang et al.,
2020a; Aneja et al., 2021) can be learned to further improve
the expressive power of the whole model. Specifically, we
consider learning energy-based model (EBM) in the latent
space as our informative prior for the generator model.

Learning latent space EBM can be challenging and requires
iterative Markov Chain Monte Carlo (MCMC) sampling
step which is computationally expensive and sensitive to hy-
perparameters. In this paper, we instead propose to use noise
contrastive estimation (NCE) (Gutmann & Hyvärinen, 2012)
for learning EBM prior via density ratio estimation. The
EBM is learned discriminatively by classifying the latent
vector sampled from the prior density and the latent sam-
pled from posterior density. Instead of variational learned
inference (Kingma & Welling, 2014; Rezende et al., 2014)
which needs a separate inference network designed, we ob-
tain the posterior latent sample through short-run Langevin
dynamics (Nijkamp et al., 2020) to ensure more accurate
inference. However, the success of NCE depends on the
closeness of prior density and posterior density (Hoffman
& Johnson, 2016). Given large gap between two densities,
NCE typically fails to accurately estimate such density ratio
which leads to inaccurate EBM modeling.

To effectively tackle the inaccurate estimation issue and
further learn more expressive prior model, we develop the
adaptive multi-stage density ratio estimation for latent space
EBM training. The proposed model breaks the density
estimation into multiple stages and learn different stages of
density ratio sequentially. Thanks to the low-dimensionality
of the latent space and the short-run style posterior inference,
in each stage, the gap between prior and posterior density
could be kept in check which makes NCE easier. The density
ratio estimated in previous stage can be further integrated
into the current prior model as a correction term to build
more expressive prior density for later stage. With such
framework, the final latent space EBM prior can then be
naturally formed by product of ratios in different stages on
top of the initial base prior.

Contributions: 1) we propose an EBM prior on genera-
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tor model which is modelled through estimation of density
ratios in multiple stages. 2) We develop the adaptive multi-
stage noise contrastive estimation to learn different stages
of ratios sequentially and adaptively. The ratio estimated
in previous stage can be integrated to form the more infor-
mative prior in the later stage. 3) we demonstrate strong
empirical results to illustrate the proposed method.

2. Background
2.1. Maximum likelihood learning of deep latent

variable models

Let x ∈ RD be an observed example such as an image,
and z ∈ Rd be the latent variables where d < D. A latent
variable generative model (a.k.a, generator model) factorize
the joint distribution of (x, z) as

pθ(x, z) = p(z)pθ(x|z), (1)

where p(z) is the prior distribution over latent variables z ,
pθ(x|z) is the top-down generation model with parameters
θ. Usually the prior distribution is chosen to be a simple one
such as N (0, Id), but it can also be more expressive with
learnable parameters (Pang et al., 2020a). The generation
model is the same as that in VAE (Kingma & Welling, 2014),
i.e., x = gθ(z) + ϵ with gθ to be the decoder network and
ϵ ∼ N

(
0, σ2ID

)
, so that pθ(x|z) = N

(
gθ(z), σ

2ID
)
. As

in VAE, σ2 takes a pre-specified value.

Given a set of N training samples {xi, i = 1, . . . , N} from
the unknown data distribution pdata(x), the model pθ can
be trained by maximizing the log likelihood over training
samples L(θ) = 1

N

∑N
i=1 log pθ (xi). Maximizing the log

likelihood L(θ) can be accomplished by gradient ascent
where the gradient can be obtained from

∇θ log pθ(x) =
1

pθ(x)
∇θpθ(x)

=

∫
[∇θ log pθ(x, z)]

pθ(x, z)

pθ(x)
dz

= Epθ(z|x) [∇θ log pθ(x, z)] . (2)

∇θ log pθ(x, z) can be easily computed according to the
form of log pθ(x, z), however, approximating the expecta-
tion requires drawing samples from pθ(z|x), which can be
difficult. Sampling from the intractable posterior pθ(z|x)
requires MCMC, and one convenient MCMC algorithm is
Langevin Dynamics (LD) (Neal et al., 2011). Given a step
size s > 0, and an initial value z0, the Lanegvin dynamics
iterates

zk+1 = zk +
s

2
∇z log pθ(z|x) +

√
sωk, (3)

where ωk ∼ N (0, I). For sufficiently small step size s,
the marginal distribution of zk will converge to pθ(z|x)

as k → ∞. However, it is not feasible to run Langevin
dynamics until convergence, and in practice the iteration
in Eq. 3 is run for finite iterations, which yields a Markov
chain with an invariant distribution approximately close
to the original target distribution. When z0 is initialized
from the noise distribution, the algorithm is called noise-
initialized short-run LD (Nijkamp et al., 2019; 2020).

2.2. Learning EBMs with discriminative density ratio
estimation

Suppose there are two distributions with density functions
p(x) and q(x) from which we can sample, we can estimate
the density ratio1 r(x) = p(x)

q(x) by training a classifier to
distinguish samples from p and q (Sugiyama et al., 2012).
Specifically, we can train the binary classifier D : Rn →
(0, 1) by minimizing the binary cross-entropy loss

min
D

−Ex∼q(x)[logD(x)]− Ex∼p(x)[log(1−D(x))].

The objective is minimized when D(x) = q(x)
q(x)+p(x) (Good-

fellow et al., 2014), and denoting the classifier at optimality
by D∗(x), we have r(x) = q(x)

p(x) ≈
D∗(x)

1−D∗(x) .

Such a technique can be useful for training Energy-based
models (EBMs). Given samples from the true data distribu-
tion pdata(x) and a base distribution q(x) that we can sample
from, we consider EBMs of the form pϕ(x) =

1
Z rϕ(x)q(x),

where Z is the normalizing constant and rϕ is an uncon-
strained positive function. With this parametrization, ob-
viously the optimal rϕ equals the density-ratio pdata(x)

q(x) . In
fact, if rϕ(x) is trained with density ratio estimation, the
normalizing constant Z is simply 1. Therefore, the problem
of learning an EBM becomes the problem of estimating a
density-ratio, which can be solved by discriminative density
ratio estimation. Typically the base distribution q(x) is cho-
sen to be Gaussian, resulted in so-called noise contrastive
estimation (NCE) (Gutmann & Hyvärinen, 2012).

Although NCE provides a promising way to train EBMs
without running MCMC, the accuracy of the density ratio
estimation depends on the closeness between the two dis-
tributions. The ratio estimator is often severely inaccurate
when the gap between p and q is large (Rhodes et al., 2020).

3. Adaptive Multi-stage Desnity Ratio
Estimation

In this section, we introduce our propose adaptive multi-
stage density ratio estimation on latent space in details.

1Assuming q(x) > 0 when p(x) > 0.
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3.1. From NCE to TRE

In NCE, the ratio r(x) = p(x)
q(x) can be estimated by minimiz-

ing

L(ϕ) =− Ex∼p(x) log

(
rϕ (x)

1 + rϕ (x)

)
− Ex∼q(x) log

(
1

1 + rϕ (x)

)
, (4)

where rϕ(x) is a non-negative ratio estimating model im-
plemented as the exponential of an unconstrained neural
network with scalar output. The minimizer ϕ∗ satisfies
rϕ∗(x) = p(x)

q(x) , and training such a ratio model rϕ is equiva-
lent to training the binary classifier D described in Sec. 2.2
(Gutmann & Hyvärinen, 2012).

As discussed in Rhodes et al. (2020), when the gap between
p and q is large, the ratio estimator is often severely inaccu-
rate. Intuitively, when there is a big gap between p and q, the
task of discriminating samples from them becomes too easy,
and thus the estimator is not enforced to capture the infor-
mation accurately. Motivated by this, Rhodes et al. (2020)
propose Telescoping density-Ratio Estimation (TRE), which
breaks the density ratio estimation task into a collection of
harder sub-tasks. Denoting p ≡ p0 and q ≡ pm, TRE
express the density ratio as a telescoping product

p0(x)

pm(x)
=

p0(x)

p1(x)

p1(x)

p2(x)
· · · pm−2(x)

pm−1(x)

pm−1(x)

pm(x)
,

where each pk is chosen such that a classifier cannot easily
distinguish it from its two neighbouring densities. An esti-
mate of the original density ratio can be expressed by the
product of intermediate ratios:

rϕ(x) =

m−1∏
k=0

rϕk
(x) ≈

m−1∏
k=0

pk(x)

pk+1(x)
=

p0(x)

pm(x)
. (5)

To train TRE, we need samples from the intermediate dis-
tributions pk(x), which can be obtained by simply taking
linear combinations of samples from original distributions
p0 and pm. The training is done by simultaneously optimiz-
ing Eq. 4 for each intermediate density ratio estimation task,
which is a multi-task learning problem (Ruder, 2017).

Although TRE makes significant improvement over simple
NCE on density ratio estimation, it is still difficult to ap-
ply the technique to energy-based modeling. On one hand,
EBMs in high-dimensional data space such as image space
can be highly complex and multi-modal, making them ex-
tremely far away from simple noise distribution. On the
other hand, the intermediate distributions are pre-designed
through linear transition, making them less effective to con-
nect complicated target densities. In Rhodes et al. (2020),
TRE only obtains limited success on training EBMs through
density estimation on MNIST dataset.

3.2. Multi-stage density ratio estimation in latent space

Instead of modeling directly on high-dimensional data space,
it is easier to introduce low-dimensional latent variables and
learn an EBM in latent space, while also learning a mapping
from the latent space to the data space (Bengio et al., 2013;
Kumar et al., 2019). We follow this approach and attempt
to model a latent space EBM using contrastive estimation.

The latent EBM can be learned discriminatively by estimat-
ing the ratio between prior density and the posterior density.
Due to low-dimensionality of the latent space, such densities
can be much easier to deal with than those in high dimen-
sional data space. However, it presents new challenges.
Firstly, while the target density in data space is given and
fixed (i.e., empirical data distribution), posterior density in
latent space is driven by the prior density and the inference
on the posterior can be hard. Secondly, while the prior is
typically assumed to be un-informative and fixed (e.g., unit
Gaussian), the expressiveness of the model is limited.

Inspired by Rhodes et al. (2020), we propose to learn the
latent space EBM of the below form through multiple stages

pϕ(z) =

m−1∏
k=0

rϕk
(z) p0(z), (6)

where p0(z) is the unit Gaussian base distribution, and rϕk

is the intermediate density ratio learned in each stage. Such
proposed model shares the similar root as the Product-of-
Expert (PoE) (Hinton, 2002) where rϕk

in each stage can be
treated as individual expert model, and it has the potential to
produce much sharper distribution than the one with single
expert model built such as (Pang et al., 2020a).

Naively, one can follow Rhodes et al. (2020) and train pϕ(z)
by applying TRE on the latent space of a pre-trained gener-
ator model, where samples from intermediate distributions
are produced by linear combination between prior p0(z) and
inferred aggregated posterior density q(z). However, we
empirically observe that the relative improvement over a sin-
gle NCE is small. Possible reasons include the difficulty of
tuning hyper-parameters for multi-task learning and easier
matching between two densities in latent space. Moreover,
the prior is fixed to be the Gaussian base, renders relatively
weaker model. We instead propose multi-stage adaptive
latent density ratio estimation, which learns different stages
of density ratios (each stage corresponds to learning one
rϕk

) sequentially and adaptively during the training of latent
structure. See Sec. 5.5 for an ablation study.

3.3. Learning latent EBMs with adaptive multi-stage
density ratio estimation

Our proposed generator model specifies the distribution on
joint space (x, z):

pθ,ϕ(x, z) = pϕ(z)pθ(x|z), (7)
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where pϕ(z) is the prior model specified in Eq. 6, and
ϕ = {ϕ0, . . . , ϕm−1} that collects parameters for all inter-
mediate learned ratios.

It is tempting to apply maximum likelihood estimation
(MLE) to train such model. However, there are several chal-
lenges: (1) learning of latent EBM pϕ(z) needs costly and
hard mixing MCMC sampling. (2) the prior pϕ(z) needs to
have a fixed form during training and cannot be adaptively
adjusted. To alleviate the aforementioned limitations, we
therefore break the density ratio estimation of pϕ(z) into m
stages, learn and build the prior sequentially and adaptively.
Specifically, in the kth stage, we consider the generator
model of the form

pθ,ϕk
(x, z) = pϕk

(z)pθ(x|z), (8)

where pϕk
(z) =

∏k−1
i=0 rϕi

(z) p0(z). The whole training
procedure iterates between the maximum likelihood estima-
tion of generation model θ and the sequential contrastive
estimation of prior model ϕ.

MLE for generation model θ: The generation model can
be trained by maximizing the marginal log-likelihood pθ(x).
In kth stage, the complete data log-likelihood of the model
pθ,ϕk

(x, z) can be expressed as

log pθ,ϕk
(x, z) = log [pϕk

(z)pθ(x|z)]

= log pϕk
(z)− 1

2

[
∥x− gθ(z)∥2 /σ2

]
+ C

where gθ is the decoder and C is a constant independent
of θ. The generation model parameter θ is then updated
using the gradient based on Eq. 2 with a batch of training n
samples xi:

θt+1 = θt + ηt

n∑
i=1

Epθt (zi|xi)

[
∂

∂θ
log pθ,ϕk

(xi, zi)

∣∣∣∣
θ=θt

]
,

where ηt is the learning rate. The expectation over the pos-
terior can be approximated by running short-run Lanegvin
dynamics in Eq. 3. Note that the running LD to sample from
pθ(z|x) is equivalent to sample from pθ(x, z) with fixed x.

Adaptive multi-stage NCE for prior ϕ: The prior model
pϕ(z) can be sequentially and adaptively learned to bridge
the gap between prior and posterior densities in the previous
stages. Specifically, in kth stage, the correction term rϕk

can
be trained to estimate the density ratio between pϕk

(z) and
its aggregated posterior qk(z) through contrastive estimation
using Eq. 4. The appealing advantage of this estimator is
that it simply trains a binary classifier rather than using
expensive MCMC sampling. The optimality of such logistic
loss leads to the estimated rϕk

(z) ≈ qk(z)
pϕk

(z) .

The prior model in the (k + 1)th stage can then be sequen-
tially adapted to match the previous aggregated posterior

Figure 1. Training adaptive multi-stage density ratio estimation.
We estimate the density ratio rk(z) in each stage using contrastive
estimation which trains a classifier to distinguish samples from the
prior pϕk (z) and samples from the aggregate posterior qk(z). Pos-
terior samples are obtained by short-run LD (blue dashed curve),
prior samples can be obtained either by short-run LD (orange
dashed curve) or using persistent chain (orange dashed line). The
ratio estimated in stage k can be integrated to form a new prior in
stage k+ 1. The whole prior is adapted across multiple stages and
learned sequentially.

qk(z), i.e., pϕk+1
(z) = qk(z) ≈ rϕk

(z)pϕk
(z). Given the

new prior, we similarly infer the posterior using short-run
LD in Eq. 3. Then density ratio estimator rϕk+1

can then be
learned through contrastive estimation to match the updated
prior and its aggregated posterior which is further used to
adapt the prior in next stage. Particularly, we have

qm−1(z)

p0(z)
=

qm−1(z)

pϕm−1
(z)

qm−2(z)

pϕm−2
(z)

· · · q0(z)
p0(z)

,

where qk(z) is the aggregated posterior for prior pϕk
(z).

The above telescoping product holds since the new prior
is designed to match the aggregated posterior in previous
stage, i.e., pϕk+1

(z) ≈ qk(z). Each stage estimates the
ratio rϕk

(z) ≈ qk(z)
pϕk

(z) via contrasive estimation. Then the
aggregated posterior qm−1(z) can be obtained via

qm−1(z) = rϕm−1 (z) pϕm−1(z) =

m−1∏
k=0

rϕk
(z) p0(z),

Our final prior model can then be obtained by matching such
aggregated posterior qm−1(z) which has the same form as
Eq. 6. The proposed training is illustrated in Figure 1.

Our method shares some high-level ideas with boosting (Fre-
und et al., 1999), as our method can be thought of training
weak classifiers sequentially on increasingly harder tasks.

Sampling from prior pϕk
(z): The density ratio estimation

of rϕk
in each stage requires the samples from the prior

pϕk
(z) and posterior. The posterior samples are inferred

through short-run Langevin dynamics which can be effi-
cient and accurate. For drawing prior samples from pϕk

(z),
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we can either use short-run prior Langevin dynamics or
persistent update.

One one hand, we could directly utilize the short-run
Langevin on the pϕk

(z) to obtain prior samples. Though
costly MCMC is needed, it tends to be much more effec-
tive than the existing approach (Pang et al., 2020a), which
considers single complex EBM prior that has highly multi-
modal energy landscape, making Langevin exploration in-
effective and hard to mix. Our prior model evolved from
simple unit Gaussian and can be much simpler and less
multi-modal for quick mixing of the Langevin sampling.

The samples from prior can also be obtained in a persistent
chain manner to avoid the prior Langevin altogether. When
introducing the (k + 1)th stage of density ratio estimation,
we assume that the current estimator rϕk

(z) performs well
in modeling the ratio between the current aggregated poste-
rior distribution qk(z) and current prior pϕk

(z). Therefore,
we simply use samples from qk(z) to approximately serve
as samples from the new prior pϕk+1

(z) for the learning
of rϕk+1

(z). In practice, it is achieved by maintaining a
memory matrix that stores a posterior samples z̃i associated
to each data point xi. Note that we only need to keep one
memory matrix throughout the training, as only the posterior
samples from the previous stage are needed.

Test time sampling: After obtaining the density ra-
tio estimators in each stage and form the final EBM
prior pϕ(z), we can sample latent variables z ∼ pϕ(z)
and produce sample x by decoding z. Sampling from
pϕ(z) can be done by either running Langvin dynamics

with ∇z log pϕ(z) = ∇z

(∑m−1
i=0 log rϕi(z)− 1

2∥z∥
2
)

, or
Sampling-Importance-Resampling (SIR) techniques.

4. Related Work
Latent variable deep generative models: Our proposed
method aims to improve the performance of latent variable
deep generative models. Such models consist of a decoder
for generation, and require an inference mechanism to infer
latent variables. VAEs (Kingma & Welling, 2014; Vahdat
& Kautz, 2020) learn the decoder network by simultane-
ously training a tractable inference network (encoder) to
approximate the intractable posterior distribution of the la-
tent variables. Alternatively, Han et al. (2017); Xie et al.
(2019); Nijkamp et al. (2020) infer the latent variables by
Langevin sampling from the posterior distribution without
using a encoder. Our method follows the latter approach
that uses Langevin sampling to infer latent variables.

Discriminative contrastive estimation for learning gener-
ative models: As introduced in Section 2.2, discriminative
contrastive estimation can be applied to learning EBMs.
Gao et al. (2020) use a normalizing flow (Papamakarios

et al., 2021) as the base distribution for contrastive estima-
tion. Aneja et al. (2021) refine the prior distribution of a
pre-trained VAE by noise contrastive estimation. However,
such a method may fail if the empirical latent distribution
(called aggregated posterior) is far away from the Gaussian
noise. Rhodes et al. (2020) propose telescoping density-
ratio estimation, which breaks the estimation into several
sub-problems. The method is connected to a range of meth-
ods leverage sequences of intermediate distributions such
as Gelman & Meng (1998); Marinari & Parisi (1992); Kirk-
patrick et al. (1983).

Generator model with flexible prior: Our method trains an
energy-based prior on the latent space by proposed adaptive
multi-stage NCE, so our work is related to the broader line
of previous papers on introducing flexible prior distribution.
Tomczak & Welling (2018) parameterized the prior based
on the posterior inference model, and (Bauer & Mnih, 2019)
proposed to construct priors using rejection sampling. Some
previous work adopt a two-stage approach, which first trains
a latent variable model with simple prior, and then trains
a separate prior model to match the aggregated posterior
distribution. For example, 2s-VAE (Dai & Wipf, 2019)
trains another VAE in the latent space; Ghosh et al. (2019)
fit a Gaussian mixture model on latent codes. Additional
work in this line include (Oord et al., 2017; Esser et al.,
2021; Xiao et al., 2019; 2021; Patrini et al., 2020).

Pang et al. (2020a) have the closest connection to our work.
Similar to us, they introduce an EBM on the latent space.
Both the latent space EBM and the generator network are
learned jointly by maximum likelihood, and in particular the
training involves short-run MCMC sampling from both the
prior and posterior distributions. In contrast, we sequentially
learn a more expressive EBM with our novel adaptive multi-
stage NCE, which avoids running MCMC for EBM prior.
We also show improved results on image generation and
outlier detection tasks.

5. Experiments
In this section, we present a set of experiments which high-
light the effectiveness of our proposed method. We want to
show that our method can (i) learn an generator model with
expressive prior distribution from which visually realistic
images can be synthesized, (ii) generalize well by faithfully
reconstructing test images during training, and (iii) success-
fully perform anomaly detection. To show the performance
of our method, we mainly include SVHN (Netzer et al.,
2011), CelebA (Liu et al., 2015) and CIFAR-10 (Krizhevsky
et al., 2010) in our study. Besides, we also include studies
on the training dynamics and the Langevin sampling, as well
as ablation studies to better understand our method. Details
about the experiments, including network architecture, the
choices of the model hyper-parameters and the optimization
method for each dataset can be found in Appendix A.



Adaptive Multi-stage Density Ratio Estimation for Learning Latent Space EBM

5.1. Image Synthesis and Reconstruction

We evaluate the quality of the generated and reconstructed
images. Ideally, if the model is well-trained, the EBM prior
on latent space will fit the marginal distribution of latent vari-
ables, which in turn leads to realistic samples and faithful
reconstructions. We benchmark our model against a variety
of previous methods including VAE (Kingma & Welling,
2014), Alternating Back-propogation (ABP) (Han et al.,
2017) and Short-run Inference (SRI) (Nijkamp et al., 2020)
which assume a simple standard Gaussian prior distribution
for the latent vector, as well as recent two-stage methods
such as 2-stage VAE (Dai & Wipf, 2019), RAE (Ghosh
et al., 2019) and NCP-VAE (Aneja et al., 2021), whose prior
distributions are learned with posterior samples in a second
stage after the generator is trained. We also compare our
method with LEBM (Pang et al., 2020a), which learns a
EBM prior adaptively during training the generator, while
the EBM prior is trained by maximum likelihood instead
of density ratio estimation. To make fair comparisons, we
follow the protocol as in (Pang et al., 2020a).

Synthesis: We report the quantitative results of FID (Heusel
et al., 2017) in Table 1, where we observe that across all
datasets, our proposed method achieves superior genera-
tion performance compared to baseline models based with
simple or learned prior distribution.

We show qualitative results of generated samples in Figure 2,
where we observe that our model can generate diverse, sharp
and high-quality samples. Additional qualitative samples
are presented in Appendix C. To test our method’s scalabil-
ity, we trained a larger generator on CelebA-HQ (128×128)
and show samples in Figure 3, and we see that the model
can produce realistic samples.

Reconstruction: Note that the posterior Langevin dynamics
should not only help to learn the latent space EBM prior
model but also produce samples that approximately come
from true posterior distribution pθ(z|x) of the generator
model. To verify this, we evaluate the accuracy of the
posterior inference by looking at reconstruction error on
test images. We quantitatively compare reconstructions of
test images with baseline models using mean square error
(MSE) in Table 1. We observe that our method consistently
obtain lower reconstruction error than competing methods
do. We also provide qualitative results of reconstruction in
Appendix B.

5.2. Anomaly Detection

Anomaly detection is another task that can be used to eval-
uate the generator model. With a generator and an EBM
prior model trained on the in-distribution data, the posterior
pθ(z|x) would have separated probability densities for in-
distribution and out-of-distribution (anomalous) samples. In
particular, we decide whether a test sample x is anomalous

or not by first sampling z from the posterior pθ(z|x) by
short-run Langevin dynamics, and then computing the joint
density pθ,ϕ(x, z) = pθ(x|z)pϕ(z). A higher value of log
joint density indicates the test sample is more likely to be a
normal sample.

Following the experimental settings in (Kumar et al., 2019;
Zenati et al., 2018), we set each class in the MNIST dataset
as an anomalous class and leave the other 9 classes as nor-
mal. Note that it is a challenging task and all previous
methods do not perform well. To evaluate the performance,
we use the log-posterior density to compute the area under
the precision-recall curve (AUPRC) (Fawcett, 2006). We
compare our method with related models in Table 2, where
we observe that our method obtains significant improve-
ments.

5.3. Analyzing Training Loss

In Figure 4, we plot the evolution of the density ratio estima-
tion loss (Eq. 4) for each stage of estimation during training.
Our experiment has 4 estimation stages, resulted in 4 den-
sity ratio estimators. We observe that the loss for the first
stage, which estimates the density ratio between unit Gaus-
sian prior p0(z) and aggregated posterior is significantly
lower than later stages, which estimate the ratio between the
updated prior and updated posterior. This observation is con-
sistent with our intuition: directly discriminating between
Gaussian prior and posterior is very easy, while introducing
additional stages of estimation make the task more difficult,
and hence the estimated density ratio is more reliable.

5.4. Analyzing Langevin Dynamics

In Figure 5, we visualize the transition of Langevin dynam-
ics initialized from p0(z) towards pϕ(z) on a model trained
on CelebA. The LD iterates for 200 steps, which is longer
than the LD for training (30 steps). We expect that with a
well-trained pϕ(z), the trajectory of a Markov chain should
transit towards samples of higher quality. Indeed, we ob-
serve that the quality of synthesis improves significantly
with as the LD progresses. In addition, we observe human
faces with different identities along the LD, suggesting that
the Markov chain can mix between different modes of the
prior distribution. This indicates that the density function
of learned EBM prior has a smooth geometry that allows
MCMC to mix well.

5.5. Ablation Study

To better understand our proposed method, we conduct abla-
tion study on number of density ratio estimators and training
methods. We use CelebA for the ablation experiments.

Number of stages. The most important hyper-parameter
of our method is the number of density ratio estimators, or
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Table 1. MSE(↓) and FID(↓) obtained from models trained on different datasets. For our reported results, the FID is computed based on
50k generated images and 50k real images and the MSE is computed based on 10k test images.

SVHN CelebA CIFAR-10
MSE FID MSE FID MSE FID

VAE (Kingma & Welling, 2014) 0.019 46.78 0.021 65.75 0.057 106.37
ABP (Han et al., 2017) - 49.71 - 51.50 - -

SRI (Nijkamp et al., 2020) 0.018 44.86 0.020 61.03 - -
SRI (L=5) (Nijkamp et al., 2020) 0.011 35.32 0.015 47.95 - -

2s-VAE (Dai & Wipf, 2019) 0.019 42.81 0.021 44.40 0.056 72.90
RAE (Ghosh et al., 2019) 0.014 40.02 0.018 40.95 0.027 74.16

NCP-VAE (Aneja et al., 2021) 0.020 33.23 0.021 42.07 0.054 78.06
LEBM (Pang et al., 2020a) 0.008 29.44 0.013 37.87 0.020 70.15

Adaptive CE (ours) 0.004 26.19 0.009 35.38 0.008 65.01

(a) SVHN (b) CelebA (c) CIFAR-10

Figure 2. Samples generated from our models trained on SVHN, CelebA and CIFAR-10 datasets.

Figure 3. Samples from our model trained on CelebA-HQ.

equivalently, the number of training stages. We present the
FID score of models trained with different number of stages
in the first part of Table 3. The line of 0 stage means no
latent EBM at all, i.e., simply training a generator model
by short-run inference and sampling from it by decoding
z ∼ p0(z).

We make the following observations. Firstly, we see that
directly sampling latent variables from p0 leads to poor FID
score, while any latent EBM trained by density ratio estima-
tion can significantly improve the performance, suggesting

Figure 4. Density ratio estimation loss for each estimation stage.

the necessity of learning the latent EBM. Secondly, we see
that multi-stage density ratio estimation can further signifi-
cantly improve the performance of single-stage estimation.
The results indicate that multi-stage density ratio estimation
facilitate the training of latent EBM by gradually making
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Table 2. AUPRC(↑) scores for unsupervised anomaly detection on MNIST. Numbers are taken from (Pang et al., 2020a) and results for
our model are averaged over last 10 trials to account for variance.

Heldout Digit 1 4 5 7 9

VAE (Kingma & Welling, 2014) 0.063 0.337 0.325 0.148 0.104
ABP (Han et al., 2017) 0.095± 0.03 0.138± 0.04 0.147± 0.03 0.138± 0.02 0.102± 0.03

MEG (Kumar et al., 2019) 0.281± 0.04 0.401± 0.06 0.402± 0.06 0.290± 0.04 0.342± 0.03
BiGAN-σ (Zenati et al., 2018) 0.287± 0.02 0.443± 0.03 0.514± 0.03 0.347± 0.02 0.307± 0.03

LEBM (Pang et al., 2020a) 0.336± 0.01 0.630± 0.02 0.619± 0.01 0.463± 0.01 0.413± 0.01

Adaptive CE (ours) 0.531 ± 0.02 0.729 ± 0.02 0.742 ± 0.01 0.620 ± 0.02 0.499 ± 0.01

Figure 5. Transition of Langevin dynamics initialized from p0(z)
towards pϕ(z) for 200 steps.

the estimation task harder. We observe that the FID score
does not improve for more than 4 stages, and therefore we
choose 4 as the number of stages for our main experiments.

Training method: adaptive vs. non-adaptive. It is im-
portant to distinguish our method from TRE in Rhodes
et al. (2020). TRE assumes the target distribution to be
fixed, therefore, if we adopt TRE, the posterior distribu-
tion pθ(z|x) will be a fixed one throughout the training. In
contrast, our training method is adaptive in the sense that
the target posterior is updated by incorporating the current
EBM prior into the joint distribution when a new stage is in-
troduced. To quantitatively compare these two approaches,
we also train non-adaptive version of the model and report
the numbers in the second part of Table 3. We observe that
models trained with non-adaptive multi-stage density ratio
estimation obtain significantly worse results. Therefore, we
believe that it is crucial to learn density ratios sequentially
with adaptive posterior.

5.6. Parameter Efficiency

One potential disadvantage of our method is its parameter
inefficiency from multiple estimator networks. Moreover,

Table 3. Results for ablation study on CelebA dataset.

Number of stages FID

Adaptive

0 62.78
1 44.17
2 39.85
4 35.38
8 35.84

Non-adaptive

0 62.78
1 43.84
2 42.61
4 42.48
8 43.06

since the training is sequential, we cannot share parameters
between estimators as done in Rhodes et al. (2020). For-
tunately, our EBM is on the latent space so the network is
light-weighted. For example, with 4 density ratio estimators,
the number of parameters in the prior EBM is only around
1% of the number of parameters in the generator. In addition,
we confirm the larger number of parameters in the latent
EBM is not the cause of improvements, as we train a single
stage model with 4× size and observe no improvement.

6. Conclusions
In this paper, we propose adaptive multi-stage density ra-
tio estimation, which is an effective method for learning a
EBM prior for a generator model. Our method learns the la-
tent EBMs by introducing multiple density ratio estimators
that learn the density ratio between prior and posterior se-
quentially and adaptively. We demonstrate the effectiveness
of our method by conducting comprehensive experiments,
and empirical results show the advantage of our method
on generation, reconstruction and anomaly detection tasks.
As future directions, our method can potentially be applied
to modeling the latent space of generator models in other
domains, such as text (Pang & Wu, 2021) and graph. We
also tend to develop more advanced and efficient inference
schemes for posterior density estimation.
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A. Experimental Details
In this section, we introduce the detailed settings of our experiments.

A.1. Datasets

We mainly study our method with SVHN (Netzer et al., 2011) (32×32×3), CIFAR-10 (Krizhevsky et al., 2010) (32×32×3),
and CelebA (Liu et al., 2015) (64× 64× 3). Following Pang et al. (2020a), we use the full training set of SVHN (73, 257)
and CIFAR-10 (50, 000), and take 40, 000 examples of CelebA as training data following (Nijkamp et al., 2019). The
training images are resized and scaled to [−1, 1].

A.2. Network architectures.

For experiments on SVHN, CelebA and CIFAR-10, each density ratio estimator network has a simple fully-connected
structure described in Table 4.

Table 4. Network structures for density ratio estimator. LReLU indicates the Leaky ReLU activation function. The slope in Leaky ReLU
is set to be 0.1.

Layers In-Out Size
Input: z 100

Linear, LReLU 200
Linear, LReLU 200

Linear 1

We let the generator network having a simple deconvolution structure, similar to DCGAN (Radford et al., 2015). The
generator network for each dataset is depicted in Table 5.

Table 5. Network structures for the generator networks of SVHN, CelebA, CIFAR-10 (from top to bottom). convT(n) indicates a
transposed convolutional operation with n output channels. LReLU indicates the Leaky-ReLU activation function. The slope in Leaky
ReLU is set to be 0.2.

Layers In-Out Size Stride
Input: x 1x1x100 -

4x4 convT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 16x16x(ngf x 2) 2

4x4 convT(3), Tanh 32x32x3 2
Layers In-Out Size Stride

Input: x 1x1x100 -
4x4 convT(ngf x 8), LReLU 4x4x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 8x8x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 16x16x(ngf x 2) 2
4x4 convT(ngf x 1), LReLU 32x32x(ngf x 1) 2

4x4 convT(3), Tanh 64x64x3 2
Layers In-Out Size Stride

Input: x 1x1x128 -
8x8 convT(ngf x 8), LReLU 8x8x(ngf x 8) 1
4x4 convT(ngf x 4), LReLU 16x16x(ngf x 4) 2
4x4 convT(ngf x 2), LReLU 32x32x(ngf x 2) 2

3x3 convT(3), Tanh 32x32x3 1

A.3. Training Hyper-parameters

We introduce some hyper-parameter setting for training our model. For the main experiments, we have 4 density ratio
estimation stages. We adopt the persistent approach for generating samples from prior distribution. For the posterior
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sampling Langevin dynamics, we use step size 0.1, and run the LD for 30 steps for SVHN and CelebA, and 40 steps on
CIFAR-10.

The parameters for the density ratio estimators and image generators are initialized with Xavier initialization (Glorot &
Bengio, 2010). We train both the generator and density ratio estimators using Adam (Kingma & Ba, 2014) optimizer. The
learning rate for the generator is 1e− 4 and the learning rate for the density ratio estimator is 5e− 5. We train the model for
100 epochs for SVHN and CelebA, where a new estimation stage is introduced every 25 epochs. For CIFAR-10, we train the
model for 200 epochs for SVHN and CelebA, where a new estimation stage is introduced every 50 epochs.

During test stage, we run LD on the learned EBM prior with step size 0.1 for 100 steps.

B. Reconstruction Samples
In Figure 6, we provide some qualitative examples of reconstructing test images. We see that our model can reconstruct
unseen images faithfully.

C. Additional Qualitative Results
We provide additional qualitative samples from our models trained on SVHN, CelebA and CIFAR-10 in Figure 7.
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Figure 6. Qualitative results of reconstruction on test images. Left: real images from test set. Right: reconstructed images by sampling
from the posterior.
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Figure 7. Additional randomly generated samples from our models.


