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ABSTRACT

Generative models, especially those parameterized by deep neural networks, are powerful

unsupervised learning tools for understanding complex data without labels. Deep generative

models have achieved tremendous success in recent years, with applications in various tasks,

including sample generation, image editing, visual domain adaptation, data augmentation

for discriminative models, and solving inverse problems.

Parallel endeavors have been proceeding along various directions – such as generative ad-

versarial networks (GAN), variational autoencoders (VAE), normalizing flows, energy-based

methods, autoregressive models, and diffusion models – and we are now able to generate

increasingly photorealistic images using deep neural networks. Although these models have

distinct formulations and properties, it is critical to have a clear view of fundamental deep

generative models, understand their pros and cons as well as know the reasons behind them.

With a good understanding of existing generative learning frameworks, we can design new

models that can maintain the advantages while eliminating the limitations of previous mod-

els. Figure 1 is an illustration of the main theme of this dissertation: we give a panoramic

view of the landscape through deep generative models and design new models based on the

landscape.

Following this theme, the dissertation can be divided into two parts. In the first part

(Chapter 1 and 2), we give a high-level overview of deep generative models and dive deep

into several important models, introducing their formulations and analyzing their pros and

cons carefully. Motivated by this analysis, in the second part (Chapter 3, 4, 5 and 6), we

introduce four advances in the direction of designing new generative models by combining

existing ones. For each new model we propose, we carefully present the formulation and

explain the motivation behind the composition. We conduct extensive experiments to show

that our proposed models can be seen as symbiotic compositions of two different generative

models: the two components in each composition help each other get rid of the limitations
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Figure 1: The landscape of deep generative modeling.

while keeping the advantages.

We hope that our findings may serve as a minor contribution to developing deep gener-

ative models.
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CHAPTER 1

INTRODUCTION

1.1 What are Generative Models?

The objective of this dissertation is to improve deep generative models. As such, a high-

level description of generative models is introduced. It begins with motivations for studying

generative models, followed by a formal statement of generative modeling and a comparison

with discriminative models.

The ability to imagine is one of the most distinctive and powerful aspects of human

cognition. Humans are able to synthesize mental objects which are not constrained by what

is presented in reality. There are many potential benefits of this capability. For example, it

allows humans to do planning by imagining how their actions could affect the outcome, and

by imagining an object, humans can learn about its properties without explicit supervision.

The sub-field of machine learning, which enables machines with this same essential capacity

to imagine and synthesize, is called generative modeling.

1.1.1 Generative Modeling: Motivations

There are many practical motivations for generative models. An obvious one is that they

can be used to generate new entities. Generating new samples that maintain characteristics

of given training samples is a valuable ability, and therefore generative models have been

applied to different domains [Karras et al., 2019, Van Den Oord et al., 2016, Dhariwal et al.,

2020, Devlin et al., 2018, Maziarka et al., 2020] as illustrated in Figure 1.1.

Besides the promising capability to generate new samples, there are other motivations for

studying generative models. One common argument is that one can use generative models

as a way of doing supervised and reinforcement learning with less labeled data. Children

can learn things, such as a new language, with relatively rare explicit supervised feedback or
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Figure 1.1: Generative models can generate samples in various domain.

reward signals. An appealing hypothesis is that humans use unsupervised generative models

to build robust representations of the world and then use those same representations to do

supervised and reinforcement learning from small amounts of explicitly labeled data. Since

humans are constantly receiving perceptual data (sound, vision, touch), humans should have

enormous amounts of unlabeled data which can be used to train generative models, and it

is possible that learning generative models requires learning features that are also useful for

supervised learning. Indeed, in machine learning, generative models play an essential role

in facilitating supervised learning and reinforcement learning [Ha and Schmidhuber, 2018,

Kingma et al., 2014, Donahue et al., 2016].

Yet another practical motivation is that generative models can provide a powerful tool to

model arbitrary distributions. Directly training generative models on an unlabeled dataset

corresponds to modeling the marginal distribution of data (more details in the next section),

and the same idea can be extended to modeling other distributions. For example, generative

models can be used to facilitate Monte Carlo sampling by learning a proposal distribution

for importance sampling [Müller et al., 2019] or learning more efficient transition kernels

for Markov Chain Monte Carlo [Song et al., 2017]. Generative models are also used to

approximate the complicated posterior distribution of inverse problems [Song et al., 2022,

Saharia et al., 2021b, Lugmayr et al., 2022] and simulation-based inference [Cranmer et al.,

2020, Papamakarios, 2019]. Indeed, it has been shown that specifically designed generative
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models can learn arbitrary conditional distributions [Ivanov et al., 2019, Li et al., 2020].

Such flexibility gives generative models an extensive range of applications.

1.1.2 Generative Modeling: Formalizing the Problem

So far, we have discussed generative modeling in qualitative terms. It learns models which

can simulate the dynamics of the world, and models that can synthesize realistic-looking data.

However, before going further, it is useful to understand the probabilistic interpretation of

generative models and provide a a formal framework for their study.

The core idea behind generative models is that observations from the world are samples

from an underlying distribution x ∼ p(x). For example, we can think of the distribution

over all possible human faces (which can be infinitely many) to be p(x), and each face is

a sample. If we have access to a set of faces, we may also choose to treat them as a finite

collection of samples from this distribution. Meanwhile, a generative model constructs a

distribution pθ(x), which is described by a set of parameters θ. Then the task of generative

modeling can be framed as trying to ensure that pθ(x) becomes as similar as possible to p(x).

Statistical divergences give a natural mathematical framework for measuring the similarity

between distributions.

In statistics and information geometry, a divergence is a function D(p∥q) : S × S → R

taking two distributions p and q over a space of distributions S as inputs, and returning a

scalar value. A divergence satisfies the following properties:

• Non-negativity: D(p∥q) ≥ 0 for all p, q ∈ S

• Identity of indiscernibles: D(p∥q) = 0 if and only if p = q

Notably, there is no symmetry assumption, meaning that D(p∥q) does not necessarily equal

to D(q∥p). This property distinguish divergence from a metric. Formally, the probabilistic

approach to generative modeling frames learning as an optimization problem where the loss
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corresponds to a given divergence:

L(θ) = argmin
θ

D (p(x)∥pθ(x)) . (1.1)

Deep Generative Models: In previous paragraphs, generative modeling is formulated

as learning a distribution that has a small divergence with the target distribution, from

which the training samples are drawn. However, the target distribution may be extremely

complicated (think about the ground truth distribution over all plausible human faces).

Unlike standard statistical inference where a mathematical expression for the distribution

is sought, typically, the goal of generative modeling on high dimensional space is to obtain

a generating function gθ : Rm → Rn that maps samples from a tractable distribution Z

(called noise space) supported in Rm to points in Rn with the same dimension as data.

The distribution constructed by the generative model pθ(x) relies on the generating function

gθ, and when gθ is implemented by neural networks, the resulting generative model is a

deep generative model (DGM). In deep generative modeling, the pθ(x) is not necessarily a

distribution with closed-form density, and it can be defined implicitly with the generator gθ.

In deep generative modeling, there is plenty of flexibility in choosing the form of gθ. For

example, gθ can either be an explicit mapping (in which case it is called a generator) or an

implicit iterative process. In addition, the dimension m of the noise space Z can generally

be different from the dimension of the data space n.

1.1.3 Generative Model vs. Discriminative Model

In traditional statistical learning, the generative model is a concept that usually comes to-

gether with the discriminative model. For completeness, a discussion on generative models

vs. discriminative models is included, which sheds additional light on explaining genera-
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tive modeling. In statistical classification, two main approaches are called the generative

approach and the discriminative approach. Following Ng and Jordan [2001], Jebara [2012]:

• A generative model is a statistical model of the joint probability distribution p(x,y)

on given observable variable x and target variable y

• A discriminative model is a model of the conditional probability p(y|x) of the target

y, given an observation x

Note that since the target variable y is unobserved (except in training), typically it is called

a latent variable. In a classification task, the target variable y is the label associated with

the data sample x, but in general, the meaning of latent variables can be more complicated.

In the setting of learning classifiers, since the prior distribution p(y) over target variables

is relatively simple, the learning of a generative model p(x,y) is typically done by learning

conditional distribution p(x|y). After that, the marginal distribution p(x) over data can be

obtained by marginalizing out y:

p(x) =

∫
y
p(x|y)p(y)dy,

and the final classifier p(y|x) can be obtained through Bayes’ rule:

p(y|x) =
p(x|y)p(y)

p(x)
.

Therefore, generative models provide an alternative approach to inferring the target variable.

The generative approach has important advantages over the discriminative approach. One

noticeable advantage is that the generative approach is more robust, as it has uncertainty

estimates when making the decision. For example, consider a deep neural network that is

trained well to classify images into three categories (y ∈ {cat, dog, horse}). However, as

pointed out by Szegedy et al. [2013], adding noise to images could result in a completely
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Figure 1.2: An example of adversarial attack: adding noise to an almost perfectly classified
image that results in a shift of predicted label.

false classification. An example of such a situation is presented in Figure 1.2 where adding

noise could shift predicted probabilities of labels, however, the visual semantics of the image

is barely changed.

This example indicates that discriminative neural networks may lack semantic under-

standing of images. A discriminative model assign classes merely based on decision bound-

aries, and therefore as long as x lies far away from the boundary, the decision is confident.

In contrast, generative models can assess uncertainty by incorporating the data probability

p(x). For example, assuming there is a well-trained generative model, the marginal likelihood

p(x) will be low after adding noise to the image, and hence the joint density p(x,y), which

can be factorized as p(y|x)p(x) should be low as well, and thus, the decision is uncertain.

Therefore, generative models are essential for building reliable models that not only learn

how to make decisions but also quantify their beliefs using the language of probability.

1.2 Important Concepts

In the following, some important concepts about generative models will be reviewed, as

they will be referred to frequently in the remaining of the dissertation. The review begins

by introducing two fundamental approaches for training generative models: the maximum

likelihood approach and the density ratio approach. Later, Langevin dynamics, an important

mathematical tool for sampling from an unnormalized distribution, will be discussed.
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1.2.1 Maximum Likelihood Approach for Training Generative Models

In the previous section, training of generative model was defined as finding a parameterized

distribution pθ(x) that minimizes a divergence between itself and target data distribution

p(x). One important component of training is to select an appropriate statistical divergence

for optimization. However, even before selecting the particular divergence, a question to

consider is what types of divergence we are able to optimize? Note that in general, the

form of the target distribution is unknown, and therefore the density of p(x) cannot be

computed. Typically, only a finite set of samples x ∼ p(x) is accessible. Meanwhile, pθ(x) is

a model that we construct, so it is reasonable to assume that the density can be computed

and samples can be drawn from it.

The Kullback–Leibler (KL)-divergence is one candidate that satisfies the requirements.

It can be rewritten as an expression in which the only term that depends on the parameters is

an expectation over p(x). In other words, only samples from p(x) are needed for optimizing

the KL-divergence. Specifically, the KL-divergence is expressed as

DKL(p(x)∥q(x)) =

∫
p(x) log p(x)dx−

∫
p(x) log q(x)dx (1.2)

=

∫
p(x) log

p(x)

q(x)
dx (1.3)

= Ex∼p(x)

[
log

p(x)

q(x)

]
(1.4)

= Ex∼p(x)[log p(x) − log q(x)]. (1.5)

In information theory, the first term Ex∼p log p(x) is the negative entropy of p(x):

Ex∼p(x) log p(x) = −H(p(x)),
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and the second term −Ex∼p log q(x) is the cross entropy between p and q:

−Ex∼p(x) log q(x) = CE(p(x), q(x)).

Note that when q(x) is the generative model pθ(x) and p(x) is the true data distribution, the

KL-divergence can be decomposed into a cross-entropy term and the entropy of data distri-

bution. Since the entropy term does not depend on θ, the KL-divergence can be minimized

by minimizing the cross-entropy −Ex∼p log pθ(x). Furthermore, note that minimizing the

cross-entropy corresponds to maximizing the log-likelihood of the data x ∼ p(x) under pθ.

Therefore, the generative model can be trained by maximizing the likelihood of the training

samples. As a by-product, the entropy of the true data distribution can be estimated by a

generative model if it maximizes likelihood.

Formally, given a set of i.i.d. training samples {xi, i = 1, . . . N} from p(x), the ideal

parameter θ satisfies

θ∗ = arg max
θ

N∏
i=1

pθ (xi) (1.6)

= arg max
θ

N∑
i=1

log pθ (xi) (1.7)

= arg min
θ

1

N

N∑
i=1

− log pθ (xi) (1.8)

≈ arg min
θ

Ex∼p(x) [− log pθ(x)] (1.9)

= arg min
θ
DKL(p(x)∥pθ(x)). (1.10)

Therefore, training generative models by minimizing KL-divergence is equivalent to maxi-

mizing the likelihood of the training samples. Such a training approach is called maximum

likelihood training.
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Maximum likelihood training only requires sampling uniformly from the real data and

evaluating the log-density of the model pθ(x). Some simple properties have to be satisfied

by pθ in order to make a valid distribution. pθ(x) needs to be non-negative everywhere

and integrate to 1 over the region where its value is defined (called the support of the

distribution):

pθ(x) ≥ 0∫
x∈R

pθ(x) = 1. (1.11)

Any parameterized family of functions that satisfies these properties can be used to define

pθ(x) in maximum likelihood training. The most fundamental one is the Gaussian distribu-

tion, which has a density parameterized by θ = {µ, σ2}:

pθ(x) =
1√
2πσ

exp
−(x− µ)2

2σ2
.

The parameter µ and σ2 obtained from maximum likelihood training is simply the empirical

mean and empirical variance of the training data.

A major limitation of most closed-form densities, is that they are uni-modal, which makes

them ill-suited to problems where very distinct points can have high density with regions of

low density separating them. One straightforward way to get around these limitations is to

replace any density with a mixture over densities with distinct parameters. For example, a

Gaussian mixture model with C components has the form

pθ(x) =
C∑
k=1

πkpθk(x),

where each component pθk(x) is a Gaussian distribution and πk is the corresponding weight.

This form is guaranteed to be normalized with the only condition being that the πk sum
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to 1. However, the maximum likelihood training of mixture models is more challenging, as

it becomes difficult to explicitly find the solution of parameters that maximize likelihood.

To get around this, the EM algorithm [Dempster et al., 1977], which is a special case of

optimizing the variational bound of the likelihood, needs to be applied.

Besides training simple models such as Gaussian and Gaussian mixture, maximum like-

lihood can be used to train a variety of advanced deep generative models. More details will

be presented in Chapter 2.

1.2.2 Density Ratio Approach for Training Generative Models

An alternative to the maximum likelihood approach involves studying the differences between

samples from a generative model model and real samples. In practice this usually takes the

form of estimating the density ratio
p(x)
pθ(x)

between the real data distribution p(x) and the

model distribution pθ(x). The density ratio can be described in terms of the following

quantity

Dθ(x) =
p(x)

pθ(x) + p(x)
, (1.12)

since
p(x)
pθ(x)

=
Dθ(x)

1−Dθ(x)
. It can be shown that learning Dθ(x) is equivalent to training a binary

classifier that discriminates between the real data and the model’s samples [Sugiyama et al.,

2012]. Specifically, a binary classifier D : Rn → (0, 1) minimizes the binary cross-entropy

loss

min
D

−Ex∼p(x)[logD(x)] − Ex∼pθ(x)[log(1 −D(x))],

which corresponds to training the Bayes classifier under the assumption of equal prior prob-

ability on two classes. Methods for successfully training classifiers have been widely studied,

and inductive biases that are known to be good for classification could also be good for
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determining the quality of generations. Another motivation for modeling the ratio between

a model and the data distribution is that it allows the model to become sensitive to any

clear difference between real samples and generated samples, which may be a much easier

task than simply determining the density of a distribution at a given point.

Next, two algorithms for training generative models with the density ratio idea are dis-

cussed.

Noise Contrastive Estimation: Gutmann and Hyvärinen [2012] proposed to estimate

the density ratio between the data distribution and a fixed model q(x) by the classifier trick

introduced above. Typically the fixed model is chosen to be a simple one such as Gaussian

noise distribution, so the method is called Noise Contrastive Estimation (NCE). Once the

quantity Dθ(x) is learned, the density ratio serves as a re-weighting factor of the noise

distribution. Specifically, assuming Dθ(x) accurately captures the quantity in Equation

1.12, then

p̂(x) =
Dθ(x)

1 −Dθ(x)
q(x)

should be a distribution that is close to the data distribution p(x). Therefore, samples

generated by p̂(x) can be approximately seen as samples from p(x), and hence a successful

generative model is defined. Sampling from p̂(x) can be done by Sampling-Importance-

Resampling (SIR) or Markov chain Monte Carlo methods.

A significant limitation of NCE is that the noise distribution q(x) is required to be close

enough to the real data distribution. If q(x) has very small values where p(x) has large

values, Dθ(x) will be close to 1 which leads to very large importance weights and high

variance sampling. Intuitively, when the classification between q(x) and p(x) is too easy, not

much information about the density ratio can be learned. In a high dimensional space like

image space, it would be extremely difficult to find a noise distribution that is close to the

data distribution, so the application of NCE is limited [Rhodes et al., 2020].
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Generative Adversarial Networks: Generative Adversarial Networks (GANs) [Good-

fellow et al., 2014] aim to leverage the strengths of using a classifier for generation, while

avoiding the major weaknesses of NCE. Unlike NCE whose model q(x) is a fixed distri-

bution, GANs update the generative model together with the classifier in an alternating

fashion. The GAN framework approaches the generative modeling problem from a game

theory perspective, as it trains two networks in an adversarial fashion.

To describe the core idea of GANs in the context of NCE, the noise distribution q(x)

is replaced by a generator network Gθ that is trained to produce samples which are similar

to the training examples by transforming latent variables z from a fixed noise distribution,

and the classifier D(x) plays a similar role as in NCE that is trained to classify between

examples from the training set and examples produced by the generator. The generator

is optimized to maximize the probability that the discriminator will classify the generated

example as “real”. This setup is described as adversarial because the loss for the generator is

the opposite of a term in the discriminator loss. Note that in GANs, the noise distribution is

defined implicitly through the generator network Gθ. In other words, the noise distribution

does not have a parameterized density.

For the usual cross-entropy classification objective in NCE, denoting the classifier to be

Dϕ with parameter ϕ, and assuming the latent variable z comes from a fixed noise distribution

p0(z), the training of GANs can be written as

min
θ

max
ϕ

V (Gθ, Dϕ),

where

V (G,D) := Ex∼pdata(x)[logD(x)] + Ez∼p0(z)[log(1 −D(G(z)))]. (1.13)

The generator cannot directly affect the logD(x) term, so for the generator, minimizing the
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loss is equivalent to minimizing log(1 −D(G(z))).

A practical observation from Goodfellow et al. [2014] is that directly optimizing the

generator network to minimize the loss leads to poor performance due to saturated gradients.

In practice, a non-saturating objective is often used, where the generator is updated by

max
θ

Ez∼q(z)[logD(Gθ(z))]. (1.14)

The above paragraphs provide a high-level overview of the core idea behind GANs. More

details about GANs will be discussed in Chapter 2.5.

1.2.3 Langevin Dynamics

The analytically intractable expectations involved in the learning of some generative models

may be approximated by various forms of Markov chain Monte Carlo (MCMC) sampling. A

simple realization of MCMC is in the form of the Langevin dynamics.

The story of Langevin dynamics began in 1827, when Robert Brown, an English botanist

was looking at pollen grains in water and observed them moving around randomly. Many

years later, Albert Einstein wrote a paper explaining the pollen’s motion which is caused by

random impacts of the water molecules on the pollen grain. Such a motion is called Brownian

Motion [Einstein, 1905]. Einstein’s explanation was later conceptualized by Adriaan Fokker

and Max Planck and resulted in the Fokker-Planck equation. Meanwhile, Paul Langevin, a

French physicist wrote a different formulation of Brownian motion (see English translation

[Lemons and Gythiel, 1997]), which resulted in the Langevin equation. Langevin dynamics

was popularized in the statistics literature in the early ’90s in [Amit et al., 1991], and was

introduced in the deep learning literature in [Welling and Teh, 2011].
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Consider the diffusion Xt defined by the (overdamped) Langevin equation

dXt = ∇f (Xt) dt+
√

2Tdwt, (1.15)

where f is a given energy function, T is the chosen temperature parameter, and ωt is a Wiener

process with mean 0 and variance dt. Under some mild conditions, particles simulated by

Equation 1.15 are samples from the Boltzmann distribution with density

π(x) ∝ exp(f(x)/T ), (1.16)

which is the stationary distribution of the continuous time Markov Chain in Equation 1.15.

The simulation of the Langevin equation by digital computers requires discretization.

Equation 1.15 can be discretized as

Xt+∆t = Xt + ∇f (Xt) ∆t+
√

2T∆tϵt, (1.17)

where ϵt ∼ N (0, I). The discretized Langevin dynamics in Equation 1.17 can be used to

sample from distributions p(x) by iterating with infinitesimally small ∆t and infinite many

steps, as long as ∇x log p(x) is known. This means that the density does not need to be

normalized, as the normalizing constant is independent of x so its gradient w.r.t x is 0.

Sampling with Langevin dynamics has a gradient ascent interpretation. Given an initial

point x0, the point of maximum probability can be reached by running gradient ascent

following the gradient of the log-density:

xk+1 = xk + αt∇x log p (xk) ,
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where αt is the step size. By further adding an appropriate amount of noise at each step:

xk+1 = xk + αt∇x log p (xk) +
√

2αϵt, ϵt ∼ N (0, I), (1.18)

a sample from the distribution is generated. The intuition is that by following the gradient,

the point reaches high probability regions, but the noise ensures it would not just reach the

maximum. Strictly speaking, the convergence of Langevin relies on a Metropolis-Hastings

accept/reject step, which depends on the true probability distribution. However, for a suffi-

ciently small step size this is not necessary in practice, because as the step size goes to zero,

the probability of acceptance of goes to 1 [Neal, 1993].

1.2.4 Evaluation of Generative Models

It is straightforward to evaluate regressors and classifiers, as typically there is a test dataset

on which the same task for training can be used to evaluate the models’ performance. How-

ever, assessing generative models can be much more difficult. In this section, several common

methods for evaluating generative models are introduced, and they will be used to evaluate

the models discussed in later chapters.

Test data likelihood: Under the maximum likelihood training approach, a straight-

forward way of quantifying the performance of the model is to compute the model’s average

likelihood pθ(x) on the test dataset. Test data likelihood can be useful for detecting overfit-

ting and it is easy to compute. However, it has several limitations. For generative models

not trained by maximum likelihood, the likelihood may not be easy to compute. More im-

portantly, the implication of test data likelihood is not clear: there’s no clue suggesting that

higher likelihood on test data leads to better sample quality or better learned representations.

Therefore, although test data likelihood is widely used for assessing models trained by max-

imum likelihood, alternative criteria that are agnostic to the actual form of the generative
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model and can directly judge the sample quality are needed.

Inception Score: Inception Score (IS) [Salimans et al., 2016] uses a fixed pre-trained

classifier as the basis for the scoring metric. It is defined by

exp
(
Ex∼pθ(x)DKL(p(y|x)∥p(y))

)
, (1.19)

where x is a sample from the generative model, p(y|x) is the categorical distribution for labels

y conditional on x given by a pre-trained classifier, and p(y) is the marginal distribution of

the labels in the generated samples according to the classifier. Higher scores imply better

generation quality. The intuition behind IS is that a generative model should produce

diverse samples from different classes while ensuring that each sample is clearly identifiable

as belonging to a single class. For example, if a model can only generate samples from a

single class, the IS will be low because p(y|x) and p(y) are similar (both will concentrate

on the single class). Likewise producing blurry samples which do not allow the classifier to

make a clear decision will make p(y|x) uncertain and more similar to p(y).

While IS has been shown to be correlated well to visual quality, there are several limita-

tions. One is that IS could be fooled by a model which produces only a single and clearly

identifiable example of each class that the classifier is aware of. This would make p(y|x)

different from p(y) while maintaining high entropy in p(y). Another issue is that it is un-

clear how accurate the metric is on datasets other than ImageNet, which is the dataset on

which the classifier is pre-trained Barratt and Sharma [2018]. In addition, IS cannot be used

to judge the sample quality on datasets where there’s no clear label, such as the CelebA

dataset.

Frechet Inception Distance: Similar to Inception Score, Frechet Inception Distance

(FID) [Heusel et al., 2017] assesses generated samples using a pre-trained classifier. However,

instead of relying on the classification head of the classifier, FID only uses the intermediate

features extracted by the classifier, making it generalize well to different datasets. The key
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idea is that the score is high when the distribution of the extracted features for generated

samples is close to the distribution of features for real data points. It assumes that these

features follow a multivariate Gaussian distribution (with a full covariance matrix). Because

the features are from the end of a deep classifier, this multivariate Gaussian assumption

is much more justified than it would be in the pixel space. To compute the FID score, a

Gaussian distribution N (µg,Σg) is fitted to features extracted from generated samples, and

another Gaussian N (µr,Σr) is fitted to features extracted from real samples. From this, the

Frechet Distance between these two Gaussians is computed:

∥∥µr − µg
∥∥2
2 + Tr

(
Σr + Σg − 2

(
ΣrΣg

)1/2)
. (1.20)

A smaller FID score implies the set of generated samples is close to the training set, suggesting

better sample quality. FID has several advantages over IS. FID can be evaluated on the test

data, so it can directly test against overfitting, unlike IS. Moreover, generating a single high-

quality example for each class will lead to low FID by giving the features of the generated

samples an unnatural distribution. FID is currently the most widely used metric for sample

quality, and finding better evaluation criteria for generative models is an ongoing research

direction.

1.3 High-level Overview of Proposed Methods

This dissertation includes a sequence of methods for designing deep generative models. In

this section, a high-level overview of each proposed method will be given to guide readers

through the major content of the dissertation.
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1.3.1 Flexible Prior of Auto-encoder Models

Many deep generative models are developed based on the idea of auto-encoding. The idea

is that an auto-encoder extracts low dimensional representations on data by enforcing the

reconstruction while passing through a bottleneck structure. The resulting representation

at the bottleneck can be treated as a latent variable that contains information that can be

decoded into a sample. By encouraging the distribution of latent variables to be close to

a parametric distribution (which is called the prior distribution), it is possible to generate

unseen samples by sampling latent variables from the prior and passing them through the

decoder. Earlier methods let the prior be a simple noise distribution such as N (0, I), how-

ever, it is difficult to learn useful representations while enforcing the latent variables to be

uninformative. As a result, after training, the gap between the distribution of the latent

variables and the prior is large. This leads to poor sample quality when generating samples

by drawing from the prior.

One method to overcome the issue is introducing a more flexible prior distribution that

can better match the latent distribution. We developed an auto-encoder based generative

model called Generative Latent Flow (GLF), which models the prior by normalizing flows. In

contrast to some other auto-encoder based generative models, which use various regularizers

that encourage the encoded latent distribution to match the prior distribution, our prior

normalizing flow explicitly constructs a mapping between these two distributions, leading

to better density matching while avoiding over regularizing the latent variables. The model

is compared with several related techniques using flexible prior distributions and we show

that it has many relative advantages including fast convergence, single-stage training, and

minimal reconstruction trade-off. We also study the relationship between the model and its

stochastic counterpart and show that our model can be viewed as a vanishing noise limit of

VAEs with flow prior.
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1.3.2 Exponential Tilting of Generative Models

Generator models such as variational auto-encoders (VAEs) and normalizing flows can gen-

erate samples quickly and are equipped with a latent space that enables fast traversal of the

data manifold. However, they tend to assign high probability density to regions in data space

outside the actual data distribution and often fail at generating sharp images. One possible

reason is that maximum likelihood training, which minimizes the forward KL-divergence

between the model distribution and the data distribution, will enforce the model density to

spread out and cover all the modes of the data distribution. However, since the capacity

of the generative model is limited by the constrained structure and network size, spreading

over the support of data distribution will result in an unwanted mismatch between the two

distributions.

Energy-based models (EBMs) have recently been shown to suffer less from the issue

mentioned above, as the maximum likelihood training of EBMs involves explicitly reduc-

ing the density of non-data regions. However, training EBMs with maximum likelihood

requires sampling from the model, which further requires expensive Markov chain Monte

Carlo (MCMC) iterations that mix slowly in high dimensional pixel space. Therefore, the

training of EBMs is difficult.

To address the issues of both generator models and EBMs, we propose to design new

generative models based on exponential tilting. Specifically, we design generative models

whose distribution is composed of the normalized density of a generator model multiplied

by the unnormalized density of an EBM. The resulting model can be seen as an exponential

tilting of the generator model. Such a formulation has several benefits. The generator model,

which is relatively easy to train, captures the overall mode structure of the data distribution

and, it relies on its exponential tilting component to explicitly exclude non-data-like regions

from the model and hence refine the samples. Moreover, the uninformative latent space of the

generator model will provide a smooth geometry for the joint density and speeds up MCMC
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updates by reparameterization. Based on the properties of resulting generative models, we

also propose a novel two-stage training strategy where the generator model is trained first,

and the EBM is trained later with the generator fixed. Such a strategy significantly simplifies

the training, as each update of the EBM is very expensive, and with a pre-trained generator

that roughly captures the target distribution, only a small number of training steps is needed

for the EBM.

1.3.3 EBMs with short-run Langevin Dynamics as Generator Models

Among a variety of methods that can be used to train EBMs, maximum likelihood train-

ing is the most popular one. However, applying maximum likelihood training to EBMs is

less straightforward. Although an EBM has a parameterized explicit density function, the

unknown normalizing constant is intractable to estimate. Mathematically, the gradient of

the log-likelihood of an EBM can be written in a form that involves an expectation over the

model distribution. In other words, Estimating the gradient for maximum likelihood training

requires sampling from the EBM. As discussed in Chapter 1.2.3, sampling from an unnor-

malized EBM requires running the Langevin dynamics. In theory, the Langevin dynamics

requires infinite many steps and diminishing step size to ensure convergence, which is cer-

tainly not feasible. In practice, the Langevin dynamics are replaced by short-run Langevin

dynamics, which only iterate for a finite number of steps and constant step size.

We provide an alternative understanding of training EBMs with short-run Langevin

dynamics. We observe that short-run Langevin dynamics behave more like generators that

transform the initial noise into a sample. We further try to understand the training procedure

by replacing short-run Langevin dynamics with deterministic solutions of the associated

gradient descent ODE. Doing so allows us to study the density induced by the dynamics,

as now the transformation is noise-free and invertible. In addition, we connect with GANs

by treating the dynamics as generator models, the initial values as latent variables, and the
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loss as optimizing a critic defined by the very same energy that determines the generator

through its gradient. With such a connection, we treat EBMs as a special case of Wasserstein

GANs [Arjovsky et al., 2017], where the generator is replaced by a deterministic iterative

transformation. We also explore the possibility of training the implicit generator with the

W-GAN loss by back-propagating through the iterative sampling process.

1.3.4 Denoising Diffusion GANs: Expressive Denoising Distribution in

Diffusion Models

A forward discrete-time diffusion process gradually perturbs data samples into white noise

step by step by adding a small amount of noise at every step. The resulting process is a

Markov process with Gaussian transition kernels. A denoising diffusion model is a generative

model that tries to recover the forward diffusion process by iteratively denoising white noises

into clean samples. Ideally, the model should be trained to match the ground truth per-step

denoising distribution. However, such a distribution is intractable, and instead, the model is

trained to match the per-step posterior distribution conditioned on the initial point. Since the

posterior distribution is a Gaussian, the denoising model is also parametrized as a Gaussian

distribution.

One major drawback of denoising diffusion models is that it requires a large number of

denoising steps to generate samples, which makes them difficult to apply in many real-world

applications. We investigate the slow sampling issue of denoising diffusion models and argue

that it is fundamentally attributed to the Gaussian assumption in the denoising step men-

tioned above. The Gaussian denoising step assumption is justified only for small step sizes.

To enable denoising with large steps, and hence, to reduce the total number of denoising

steps, we propose to model the denoising distribution using a complex multi-modal distribu-

tion. We introduce denoising diffusion generative adversarial networks (denoising diffusion

GANs) that model each denoising step using a multi-modal conditional GAN. Similar to de-
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noising diffusion models, the GAN models the denoising distribution by generating a sample

of single-step denoising conditioned on the noisy sample, and the generation is judged by

the discriminator. With such a flexible denoising distribution, the number of denoising steps

can be reduced to as low as 4, which is a 1000× speed-up compared to traditional denoising

diffusion models.

1.4 Organization

The manuscript follows the journey of conducted research toward designing generative mod-

els with the core idea of symbiotic composition. Specifically, different generative learning

frameworks are combined together to make a stronger generative model. The remainder of

the dissertation is organized as follows.

To better understand the motivation behind the composition approach, in Chapter 2, a

comparative review of existing deep generative models will be provided. For each type of

generative model that is reviewed, its mathematical formulation, history of development, and

recent advances will be discussed. Towards the end of Chapter 2, the pros and cons of differ-

ent generative models will be compared, which leads to the motivation of our compositional

approach.

In Chapter 3, 4, 5, and 6, research projects outlined in Chapter 1.3 will be presented in

detail. Each chapter will begin with the motivation of the proposed approach, followed by

the model specification and derivation. Related work will be discussed to better position

our method with contemporary work, and extensive experimental results will be presented

to show the effectiveness.

In Chapter 7, a conclusion of the dissertation, as well as a discussion on future work will

be provided.
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CHAPTER 2

A COMPARATIVE REVIEW OF DEEP GENERATIVE

MODELS

This dissertation will introduce several novel deep generative models by combining existing

generative learning frameworks. To better understand the motivation and formulation of

each proposed model, it is important to review existing deep generative models. In this

chapter, several popular deep generative models will be introduced in detail. Towards the

end of this chapter, those models will be compared against each other, highlighting the

motivation for designing a compositional approach. We roughly categorize deep generative

models into two types: explicit models and implicit models. Explicit models refer to those

who have an explicit parameterized density, and the training is often done by maximizing

the likelihood as introduced in Section 1.2.1. In contrast, implicit models do not have an

explicit form of the density, and hence the distribution is defined implicitly through the

sample generation process. As a result, alternative training approaches, such as the density

ratio trick, introduced in 1.2.2, are needed to train implicit models.

A list of deep generative models that will be covered in this chapter is

• Explicit models

1. Variational Auto-encoders (in Section 2.1)

2. Normalizing Flows (in Section 2.2)

3. Energy-based Models (in Section 2.3)

4. Denoising Diffusion Models (in Section 2.4)

• Implicit models

1. Generative Adversarial Networks (in Section 2.5)
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2.1 Variational Auto-encoders

The framework of Variational Auto-encoders (VAEs) [Kingma and Welling, 2013, Rezende

et al., 2014] provides a principled method for jointly learning deep latent-variable generative

models and inference models using gradient-based optimization. A VAE can be viewed

as a combination of two coupled models: an encoder or recognition model, and a decoder

or generative model. VAEs can be understood from different points of view. From the

perspective of deep learning, VAEs can be seen as a generative version of plain Auto-encoders

(AEs) whose goal is to reconstruct data. From the perspective of statistics, VAEs are a tool

to perform efficient posterior inference on complicated latent variable models. In order to

give a comprehensive introduction to VAEs, we first provide a brief review of preliminary

knowledge on deep latent variable models, followed by the formulation of VAEs. Later, some

limitations of VAEs will be discussed, and hierarchical VAEs, an important extension of VAE

models, will be introduced.

2.1.1 Preliminaries

Assuming the observed variable x is a random sample from an unknown underlying process

whose true distribution p(x) is unknown. We attempt to approximate this underlying process

with pθ(x). Learning corresponds to searching for a value of the parameters θ such that the

distribution given by the model pθ(x) approximates the true distribution of the data p(x)

over a collected dataset D =
{
x(1),x(2), . . . ,x(N)

}
. Unlike observable variables x, latent

variables are variables that are part of the model, but which we cannot observe, and are

therefore not part of the dataset. Typically, latent variables are denoted by z. When we

take latent variables z into consideration, the model represents a joint distribution pθ(x, z)

over both the observed variables x and the latent variables z. The marginal distribution
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over the observed variables x can be obtained by marginalizing out z:

pθ(x) =

∫
pθ(x, z)dz. (2.1)

As a simple example, if z is a discrete categorical random variable, and the conditional distri-

bution pθ(x|z) is a Gaussian, then pθ(x) is a Gaussian mixture distribution. For continuous

z, pθ(x) can be seen as an infinite mixture.

The term Deep Latent Variable Models (DLVM) is used to describe a latent variable

model pθ(x) that is parameterized by neural networks. One advantage of DLVMs is their

flexibility: even if each component in the joint distribution (such as the prior or condi-

tional distribution) has a simple form, the resulting marginal distribution pθ(x) can be very

complex. The flexibility makes DLVMs attractive for modeling complicated underlying dis-

tributions p(x). One simple and common way to factorize a DLVM is given by the following

structure:

pθ(x) = pθ(x|z)pθ(z), (2.2)

where pθ(x|z) is the conditional distribution and pθ(z) is called the prior distribution over

z. Since the prior distribution typically does not have trainable parameters, usually it is

denoted as p(z).

Since we have an explicit density of DLVMs given in Equation 2.1, it is tempting to train

DLVMs by maximum likelihood. However, one major challenge of maximum likelihood learn-

ing in DLVMs is that the marginal probability of the data is typically intractable. In high

dimensional space, the integral in Equation 2.1 usually does not have an analytic solution or

efficient estimator. Due to this intractability, we cannot differentiate it w.r.t. its parameters

and optimize it. The intractability also implies an intractable posterior distribution, which
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is written as

pθ(z|x) =
pθ(x, z)

pθ(x)
. (2.3)

The expression pθ(x, z) is easy to compute (it is assumed to be factorized into a simple

form), but the intractable pθ(x) makes the posterior also intractable. This makes posterior

inference, which aims to infer the latent variable z given observation x, difficult. Tradi-

tional inference methods can be relatively expensive, as they often require a per-datapoint

optimization loop, or yield bad posterior approximations.

2.1.2 Formulation of VAEs

In the previous chapter, we introduced deep latent-variable models (DLVMs), and the in-

tractability problem of estimating the marginal and posterior distributions. The framework

of Variational Auto-encoders (VAEs) provides a computationally efficient way to overcome

the issue of intractability and optimize DLVMs. The core idea that turns the DLVM’s in-

tractable posterior inference and learning problems into tractable problems is introducing a

parametric inference model qϕ(z|x). The inference model is called an encoder. The goal of

the inference model is to be as close to the true posterior as possible:

qϕ(z|x) ≈ pθ(z|x). (2.4)

The inference model is parameterized by a neural network with parameter ϕ, and the distri-

bution qϕ(z|x) is chosen to be a tractable one. One important point is that we use a single

encoder neural network to perform posterior inference over all of the samples in the dataset.

This is the major difference when compared to more traditional variational inference methods

where the variational parameters are not shared, but instead separately optimized for each

sample. Such a strategy for sharing parameters for posterior inference is called amortized
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inference [Gershman and Goodman, 2014].

The introduction of a parameterized inference model qϕ(z|x) allows us to obtain a

tractable lower bound on the marginal data log-likelihood log pθ(x), and hence we can op-

timize such a lower bound as a proxy for optimizing the data likelihood. The lower bound

is called the variational lower bound or evidence lower bound, abbreviated as ELBO. Below

we will provide two different approaches to derive ELBO. In the first approach, the ELBO

is derived through Jensen’s inequality, saying that given a random variable X and a convex

function f , we have

f(E(X)) ≤ E(f(X)). (2.5)

The derivation is given as follows. For any distribution on z, and in particular any parame-

terized inference model qϕ(z|x), we have

log pθ(x) = log

∫
pθ(x|z)p(z)dz

= log

∫
qϕ(z|x)

qϕ(z|x)
pθ(x|z)p(z)dz

= logEz∼qϕ(z|x)

[
pθ(x|z)p(z)

qϕ(z|x)

]

≥ Ez∼qϕ(z|x) log

[
pθ(x|z)p(z)

qϕ(z|x)

]

= Ez∼qϕ(z|x)
[
log pθ(x|z) + log p(z) − log qϕ(z|x)

]
= Ez∼qϕ(z|x)[log pθ(x|z)] − Ez∼qϕ(z|x)

[
log qϕ(z|x) − log p(z)

]
. (2.6)

Jensen’s inequality is used in the fourth line. Note that the second term in the final Equation

2.6 corresponds to a KL-divergence term:

Ez∼qϕ(z|x)
[
log qϕ(z|x) − log p(z)

]
= DKL(qϕ(z|x)∥p(z)). (2.7)
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As it is a lower bound of the marginal data log likelihood log pθ(x), the expression in Equation

2.6 is the ELBO, denoted by Lθ,ϕ(x):

Lθ,ϕ(x) = Ez∼qϕ(z|x)[log pθ(x|z)] −DKL(qϕ(z|x)∥p(z)). (2.8)

An alternative derivation of the ELBO is also provided. It will help us to understand the

gap between ELBO and the exact marginal log likelihood of data. Again, given any qϕ(z|x),

we have

log pθ(x) = Ez∼qϕ(z|x)[log p(x)]

= Ez∼qϕ(z|x)

[
log

pθ(z|x)p(x)

pθ(z|x)

]
= Ez∼qϕ(z|x)

[
log

pθ(x|z)p(z)

pθ(z|x)

]
= Ez∼qϕ(z|x)

[
log

pθ(x|z)p(z)

pθ(z|x)

qϕ(z|x)

qϕ(z|x)

]

= Ez∼qϕ(z|x)

[
log pθ(x|z)

p(z)

qϕ(z|x)

qϕ(z|x)

pθ(z|x)

]

= Ez∼qϕ(z|x)

[
log pθ(x|z) − log

qϕ(z|x)

p(z)
+ log

qϕ(z|x)

pθ(z|x)

]
= Ez∼qϕ(z|x)[log pθ(x|z)] −DKL(qϕ(z|x)∥p(z)) +DKL(qϕ(z|x)∥pθ(z|x)). (2.9)

Comparing Equation 2.9 with Equation 2.8, we obtain the following relationship:

log pθ(x) = Lθ,ϕ(x) +DKL(qϕ(z|x)∥pθ(z|x)), (2.10)

and by the properties of KL-divergence, we know that the ELBO is a lower bound on

log pθ(x), and the gap between the ELBO and log pθ(x) (which is called the tightness of the

bound) is 0 if and only if qϕ(z|x) = pθ(z|x), i.e., the parameterized inference model exactly

matches the ground truth posterior.
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Equation 2.10 tells us that by maximize the ELBO w.r.t. θ and ϕ, we are

1. Approximately maximizing the marginal log likelihood log pθ(x), which means that we

are doing maximum likelihood training.

2. Minimizing DKL(qϕ(z|x)∥pθ(z|x)), which closes the gap between true posterior and

the parameterized inference model.

2.1.3 Parameterization and Optimization

Parameterization of distributions in the VAE model: We need to find appropriate

parameterization for the prior distribution p(z), the encoder distribution qϕ(z|x) and the

decoder distribution pθ(x|z). While there are multiple ways to define these distributions,

and the definition depends on the data type (e.g., discrete or continuous), we will only discuss

the most common parameterization assuming both x and z are continuous random variables.

• Decoder distribution pθ(x|z). When dealing with continuous data, the decoder distri-

bution is usually chosen to be a factorized Gaussian. For example, if x represents an

image, then each pixel in x follows an independent Gaussian distribution. Specifically,

given the decoder network Gθ, pθ(x|z) is parameterized by

pθ(x|z) = N (x;Gθ(z), σ2I). (2.11)

Note that typically the variance σ2 is fixed and shared across all dimensions, although

there are exceptions such as Dai and Wipf [2019], Vahdat and Kautz [2020].

• Prior distribution p(z). The prior distribution is usually chosen to be a simple noise

distribution that is easy to sample from. One common choice is N (x; 0, I). More

flexible priors with learnable distribution will be discussed in Chapter 3.
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• Encoder distribution qϕ(z|x). The most common way to parameterize this is as a

Gaussian distribution with diagonal variance. Specifically, given an encoder network

Eϕ,

(µ, logσ) = Eϕ(x)

qϕ(z|x) = N (z;µ, diag(σ)).

Training objective: As discussed previously, the training objective of the VAE model

is to maximize the ELBO in Equation 2.8, which is equivalent to

min
θ,ϕ

−Lθ,ϕ(x) = −Ez∼qϕ(z|x)[log pθ(x|z)] +DKL(qϕ(z|x)∥p(z)). (2.12)

Given the specific parameterization of distributions discussed above, the first term corre-

sponds to the negative Gaussian log likelihood of x:

−Ez∼qϕ(z|x)[log pθ(x|z)] =
1

2σ2
∥x−Gθ(z)∥2, (2.13)

which corresponds to an L2 reconstruction error. The second term is the KL-divergence

between the encoder distribution and the prior. If the common parameterization of these

two distributions is used, then the KL-divergence can be expressed in an analytical form.

In the general case, the KL-divergence can be approximated by Monte Carlo samples from

qϕ(z|x). The training objective of VAEs seeks a balance between

1. Enforcing reconstruction on x by minimizing the reconstruction loss, and

2. Regularizing qϕ(z|x) towards uninformative prior p(z).

Training θ is relatively easy, as the gradient of both terms in Equation 2.12 can be

approximated by a batch of samples from qϕ(z|x). However, there is a subtle thing when
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trying to train ϕ: the gradient is hard to compute as it is not trivial to differentiate through

the sampling process that is used to approximate the expectation. Fortunately, for continuous

z, we can use the reparameterization trick to overcome the challenge.

Reparameterization Trick: The ELBO can be differentiated w.r.t both θ and ϕ

through a change of variables, also called the reparameterization trick introduced by Kingma

and Welling [2013], Rezende et al. [2014]. The trick is to ’externalize’ the randomness in z by

re-parameterizing the variable as a deterministic and differentiable function of an external

variable. Specifically, we express the random variable z ∼ qϕ(z|x) as some differentiable

(and invertible) transformation of another random variable ϵ ∼ p0(ϵ) that is absolutely inde-

pendent of x or ϕ. In other words, denoting the transformation as r, we can draw a sample

from qϕ(z|x) by z = r(ϵ, ϕ, z). Given such a change of variable, expectations of a function f

over qϕ(z|x) can be rewritten in terms of ϵ:

Eqϕ(z|x)[f(z)] = Ep(ϵ)[f(z)], (2.14)

where z = r(ϵ, ϕ, z). Then, using the fact that the expectation and gradient operators

become commutative, we have

∇ϕEqϕ(z|x)[f(z)] = ∇ϕEp(ϵ)[f(z)]

= Ep(ϵ)
[
∇ϕf(z)

]
= Ep(ϵ)

[
∇ϕf(r(ϵ, ϕ, z))

]
, (2.15)

which can be approximated by samples from p0(ϵ).

When qϕ(z|x) has the diagonal Gaussian parameterization, we can define the transfor-

mation r by the shift and scale of the Gaussian, and let ϵ ∼ N (0, I):

z = µ+ σ ⊙ ϵ,
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where (µ, logσ) = Eϕ(x).

2.1.4 Typical issues with VAEs

VAEs are a very powerful class of models, mainly due to their flexibility. However, they also

suffer from several issues. Here we would discuss two major issues of VAEs: the posterior

collapse and the prior hole problem.

Posterior collapse: Recall that the ELBO can be decomposed into a reconstruction

term and a KL regularization term. For a non-trainable prior like the standard Gaussian,

the regularization term will be minimized if qϕ(z|x) = p(z) for all x. It is possible with a

strong decoder that the model may treat z as noise and reach an equilibrium state, where

qϕ(z|x) ≈ p(z) for all x, that is hard to escape. This issue is known as the posterior

collapse, which is typical when the VAE is trained on sequence data, due to the powerful

auto-regressive decoder. One possible solution is proposed in Bowman et al. [2015], Sønderby

et al. [2016], where the weight of the KL-regularization term is slowly annealed from 0 to 1

over the training.

Prior hole: Another issue is caused by the mismatch between the aggregated posterior

qϕ(z) = Ex∼p(x)
[
qϕ(z|x)

]
and the prior p(z). Note that the aggregated posterior can be seen as the empirical marginal

distribution of the latent variables assuming q(z|x) is the true conditional distribution. Note

that new samples from a VAE are generated by sending a sample from the prior distribution

to the decoder. Therefore, in order for VAEs to generate realistic samples, the aggregated

posterior should match the prior distribution. However, it is observed that there are regions

where there prior assigns high probability, but the aggregated posterior assigns low proba-

bility, or the other way around. Then, sampling from these holes provides unrealistic latent
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values and the decoder produces images of very low quality. This problem is referred to as

the hole problem. Such a problem can be resolved by introducing a flexible and trainable

prior, which is studied comprehensively in Chapter 3.

2.1.5 Hierarchical VAEs

There are many extensions of the VAE model that aim to improve the performance of

generative modeling. Among them, the idea of hierarchical VAEs is an important one.

Simple VAEs have only one level of latent variables, namely we assume all latent variables

are directly dependent on data x. Such a model may not be able to model a hierarchy of

abstraction levels. For example, when we infer latent variables from an image of a human

face, we may want the latent variables to capture not only low-level information such as

skin color, hair color, and size of eyes but also high-level information such as the overall

structure of the face. The information corresponds to a different level of abstraction, and

it may be difficult to model all latent variables in a single level. As a result, hierarchical

VAEs are introduced to increase the expressiveness of both the variational posterior and prior

by partitioning the latent variables into disjoint groups z = {z1, z2, . . . , zL} and designing

conditional dependencies between them.

There are multiple ways to design the factorization. For example, when we assume

z = {z1, z2}, the generative model can be factorized as

pθ(x, z) = pθ (x|z1) pθ (z1|z2) p (z2) , (2.16)

where we have a unit Gaussian prior on z2, and pθ (z1|z2) is a conditional Gaussian. The

variational posterior can be factorized in multiple ways. Given the generative model in
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Equation 2.16, we want write the variational posterior as either

qϕ(z|x) = qϕ(z1|x)qϕ(z2|z1,x)

or

qϕ(z|x) = qϕ(z2|x)qϕ(z1|z2,x).

The former is called a bottom-up inference model, and the latter is called a top-down in-

ference model. It has been shown that it is advantageous to follow the top-down approach

[Kingma et al., 2016, Salimans, 2016], which lets the generative model and inference model

share the topological ordering of latent variables. One advantage of shared ordering is that

this allows us to easily share parameters between the inference and generative models, leading

to faster learning and better solutions.

Multiple hierarchical VAE models are proposed based on top-down inference. The idea

was initially proposed by Kingma et al. [2016], Sønderby et al. [2016], and further developed

by Maaløe et al. [2019]. Recently, large VAEs with very deep latent structure [Vahdat

and Kautz, 2020, Child, 2021] achieve the best performance on likelihood modeling among

VAEs. These approaches differ in their implementations and parameterizations used (i.e.,

architectures of DNNs), however, they all could be categorized as instantiations of top-down

hierarchical VAEs.

2.2 Normalizing Flows

The search for probabilistic models that correctly describe the underlying processes that pro-

duce data is one of the enduring objectives of statistics and machine learning. Here we will

discuss a straightforward way to address this need: building probability distributions as nor-

malizing flows. Normalizing flows provide a general mechanism for constructing expressive
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probability distributions, only requiring the specification of a simple base distribution and a

series of simple invertible transformations. Normalizing flows work by transforming a simple

density through a series of transformations to produce a more complex and multi-modal

distribution. The core idea is that repeated application of even simple transformations to

a unimodal base density leads to a distribution of high complexity. Such a property makes

normalizing flows useful in some key tasks in statistics such as modeling, inference, and

simulation.

We will first give a brief historical overview of normalizing flows. The idea of whitening,

which means transforming data into white noise through a deterministic transformation,

has been discussed in early literature such as Johnson [1966] as a feature pre-processing

tool. Chen and Gopinath [2000] use the whitening idea as a density estimation technique,

similar to the purpose of modern normalizing flows. Their method is named Gaussianization.

Tabak and Turner [2013] first introduces the concept of normalizing flows, describing the

flow as a composition of simple mappings. Such a composition is essential for ensuring

expressivity while preserving computational tractability. Rippel and Adams [2013] connects

the idea of normalizing flows to deep learning by parameterizing flows with deep neural

networks. Rezende and Mohamed [2015] used the idea and language from Tabak and Turner

[2013] to apply normalizing flows in variational inference, making the variational posterior

of VAEs more expressive. A series of works explore the parameterization of normalizing

flows and introduce a scalable and computationally efficient architecture [Dinh et al., 2014,

2016, Kingma and Dhariwal, 2018], demonstrating further improvements to modeling and

inference. They will be reviewed in this chapter.

In the following, we will first introduce the mathematical formulation of normalizing

flows, followed by several important flow parameterizations. Applications of normalizing

flows and their limitations will be discussed towards the end.
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2.2.1 Fundamentals of Normalizing Flows

We begin by outlining basic definitions and properties of normalizing flows. Normalizing

flows provide a general way of constructing flexible probability distributions over continuous

random variables. Let x be the random variable we are interested in modeling. The main

idea of flow-based modeling is to express x as an invertible transformation T of a sample z

from a base distribution p0(z):

x = T (z), z ∼ p0(z). (2.17)

Note that in comparing this with the formulation of latent variable models, it is tempting to

call p0(z) the prior distribution and z the latent variable, but this terminology is not well-

suited for normalizing flows, as given observable variable x, z can be uniquely determined

by z = T−1(x), and hence z is no longer ’latent’. As a result, we refer to p0 as the base

distribution.

To make a normalizing flow model, the transformation T must be bijective (or invertible),

and both T and T−1 must be differentiable. Note that these requirements imply that z must

have the same dimension as x. A transformation T that satisfies such properties is called a

diffeomorphism. When T is a diffeomorphism, the density of x is well-defined and can be

obtained by change-of-variables. Specifically, we have

p(x) = p0(z) |det JT (z)|−1 , (2.18)

where z = T−1(x) and the Jacobian JT (z) is the D×D matrix (assuming z and z are both
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in RD) of all partial derivatives of T evaluated at z:

JT (z) =


∂T1
∂z1

· · · ∂T1
∂zD

...
. . .

...

∂TD
∂z1

· · · ∂TD
∂zD

 . (2.19)

Equivalently, p(x) can be written in a form that only involves x:

p(x) = p0(T−1(x))
∣∣det JT−1(x)

∣∣ , (2.20)

due to the inverse function theorem saying that if T−1 is continuously differentiable and

z = T−1(x),

JT−1(x) = JT (z)−1, (2.21)

and the property of determinants that detA−1 = 1
detA for any invertible matrix A. In

practice, we often construct a flow-based model by implementing T with a neural network

and taking p0 to be a simple distribution such as unit Gaussian. Intuitively, we can think

of the transformation T as warping the space in order to push the density p0(z) into p(x),

and the absolute value of the Jacobian determinant term quantifies the relative change of

volume caused by applying T .

An important property of invertible and differentiable transformations is that they are

composable. Specifically, the composition of two such transformations T1 and T2 is also

invertible and differentiable. The inverse and determinant of Jacboian of the composition

can be expressed as

(T2 ◦ T1)−1 = T−1
1 ◦ T−1

2 (2.22)

det JT2◦T1(z) = det JT2 (T1(z)) · det JT1(z). (2.23)
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Figure 2.1: Illustration of a normalizing flow model, transforming a simple distribution p0
to a complex one through composition of transformations.

The second equation is due to the property of the Jacobian of composition of functions

and the fact detAB = detA detB. In consequence, we can build complex transformations

by composing multiple simpler transformations, without compromising the requirements of

invertibility and differentiability. The same idea can be extended to composing multiple

transformations T1, T2, . . . , TK to obtain T = TK ◦ · · · ◦ T1, where Tk transforms zk−1 into

zk, assuming z0 = z and zK = x. With a chain of transformations, the ’flow’ is made

of the trajectory that a sample from the base distribution p0(z) follows as it is gradually

transformed by the sequence of transformations. The word ’normalizing’ refers to the inverse

of the chain of transformations which takes a collection of samples from p(x) and transforms

them (hence ’normalizes’ them) into a collection of samples from p0. Figure 2.1 illustrates

the idea of normalizing flow 1.

A flow model allows us to

1. Sample from the model by first sampling z ∼ p0(z) and then apply T , and

2. Evaluate the density of a sample x by Equation 2.20.

These operations have different computational requirements. Sampling from the model re-

quires the ability to sample from the base distribution and computing the forward trans-

1. Figure adapted from https://lilianweng.github.io/lil-log/2018/10/13/

flow-based-deep-generative-models.html
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formation T . Evaluating the model’s density requires computing the inverse transformation

T (−1) and compute the determinant of Jacobian. Some parameterizations of flows satisfy all

these computational requirements, while some parameterizations only satisfy some of these

requirements, making them suitable for specific applications.

Training: Fitting a normalizing flow to a target distribution can be done by maximizing

likelihood, as the likelihood of x under the model can be specified. In particular, denoting

the set of parameters of all transformations to be θ, the objective for training a normalizing

flow is

max
θ

L(θ) = Ex∼p(x) [log pθ(x)]

= Ex∼p(x)

[
log p0(T−1

θ (x)) + log

∣∣∣∣det J
T−1
θ

(x)

∣∣∣∣] . (2.24)

Maximum likelihood training is well suited for situations in which we have samples from the

target distribution but we cannot evaluate the ground truth density p(x). We also need to

explicitly compute and differentiate T−1 and the determinant of Jacobian.

Alternatively, the model can also be trained by minimizing the reverse KL divergence:

minLreverse(θ) = DKL (pθ(x)∥p(x))

= Ex∼pθ(x) [log pθ(x) − log p(x)]

= Ez∼p0(z)
[
log p0(z) − log

∣∣det JTθ(z)
∣∣− log p(Tθ(z))

]
, (2.25)

where in the third line we apply change of variable to express the expectation with respect

z. The reverse KL divergence is suitable when we have the ability to evaluate the target

density but not necessarily sample from it. For example, this objective is used in variational

inference, where a normalizing flow is used to model the variational posterior [Rezende and

Mohamed, 2015, Kingma et al., 2016].
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2.2.2 Parameterizations of Normalizing Flows

Having described a high-level formulation for normalizing flows, we transition into describing

various ways to construct a flow. We have discussed that a flow T consists a chain of

transformations Tk that are composed as T = TK ◦ · · · ◦ T1. In the case of maximum

likelihood training, we need to compute the inverse and Jacobian determinant, and therefore

we need each block of transformation to have tractable inverse and Jacobian determinant.

These requirements make the computation of inverse and Jacobian determinant of the whole

flow T tractable, since

T−1 = T−1
1 ◦ · · · ◦ T−1

K , (2.26)

and

log |det JT (z0)| = log

∣∣∣∣∣∣
K∏
k=1

det JTk (zk−1)

∣∣∣∣∣∣ =
K∑
k=1

log
∣∣det JTk (zk−1)

∣∣ . (2.27)

We focus on the density estimation task, which is done by maximum likelihood training.

Therefore, we only discuss flow parameterizations that have tractable inverse and Jacobian

determinant.

A tractable Jacobian determinant means that we can compute the Jacobian determinant

efficiently (in linear time). Note that for a general invertible function with D−dimensional

input and output, the complexity for computing the Jacobian determinant is D3, which is

infeasible for large D. Hence, we need to design functional forms that allow the Jacobian

determinant to be computed in linear time with respect to the input dimensionality.

We introduce two particular parametrizations of normalizing flows: RealNVP [Dinh et al.,

2016] and Glow [Kingma and Dhariwal, 2018].

RealNVP: The RealNVP (Real-valued Non-Volume Preserving) model implements a
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normalizing flow by stacking a sequence of invertible transformation with affine coupling.

Specifically, for each transformation f : x ∈ RD → y ∈ RD, the input dimensions are split

into two parts with dimension d and D − d respectively, where

1. The first d dimensions stay the same: y1:d = x1:d, and

2. The remaining d dimensions undergo an affine transformation, where both the scale

and shift parameters are functions of the first d dimensions: yd+1:D = xd+1:D ⊙

exp (s (x1:d))+t (x1:d), where s and t and translation functions parametrized by neural

networks, and ⊙ denotes elementwise product.

It is easy to verify the invertibility of such a transformation:

x1:d = y1:d

xd+1:D = (yd+1:D − t (y1:d)) ⊙ exp (−s (y1:d)) .

Next, we verify that the Jacobian determinant is easy to compute. The Jacobian has the

following form:

J =

 Id 0d×(D−d)
∂yd+1:D
∂x1:d

diag (exp (s (x1:d))) ,

 (2.28)

which is an upper triangular matrix. We know that the determinant for an upper triangular

matrix is simply the product of diagonal entries, so the Jacobian determinant is

det(J) =
D−d∏
j=1

exp (s (x1:d))j = exp

D−d∑
j=1

s (x1:d)j

 , (2.29)

which can be computed in linear time. Further note that in this parameterization, the inverse

transformation does not involve the inverse of s or t, and the Jacobian determinant does not
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involve computing the Jacobian of s or t, so both s and t can be modeled by arbitrarily

complex neural networks.

One potential issue of the affine coupling layer is that some dimensions (channels when

applied to image data) remain unchanged through the transformation. To make sure all the

inputs have a chance to be transformed, the model reverses the ordering in each layer so

that different components are left unchanged. Following such an alternating pattern, the set

of units that remain identical in one transformation layer is always modified in the next.

Glow: The Glow model makes modifications to the RealNVP model. In particular, it

uses affine coupling layers and adds an activation norm module. It simplifies the architecture

by replacing the reverse permutation operation on the channel ordering with invertible 1× 1

convolutions.

The activation norm is an operation similar to batch normalization, which performs an

affine transformation using a scale and bias parameter per channel. However, unlike batch

normalization, the activation norm also works when the batch size is 1. Kingma and Dhariwal

[2018] found that the additional activation norm module before each transformation improves

the performance.

The invertible 1 × 1 convolution module replaces the permutation operation between

two blocks of transformations in the RealNVP model. Recall that between blocks of the

RealNVP flow, the ordering of channels is reversed so that all the data dimensions have

a chance to be altered. A 1 × 1 convolution with an equal number of input and output

channels is a generalization of any permutation of the channel order. We illustrate that the

Jacobian determinant of this module can be computed efficiently. Suppose we want to apply

the invertible 1 × 1 convolution on a feature map h with size h× w × c, the weight matrix

W has size c× c. The output f after the convolution is a tensor with size h×w× c. It can
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be shown that (see Kingma and Dhariwal [2018])

log

∣∣∣∣det
∂f

∂h

∣∣∣∣ = log
(
| detW|h·w|

)
= h · w · log | detW| (2.30)

Since the weight matrix is relatively small, the matrix determinant can be computed effi-

ciently.

2.2.3 Applications of Normalizing Flows

Normalizing flows, due to their ability to be expressive while still allowing for exact likeli-

hood calculations, have been widely used in probabilistic modeling. Besides estimating the

density of given data, normalizing flows are also powerful generative models that can produce

synthetic samples. For example, normalizing flows have been applied to generation tasks on

images [Kingma and Dhariwal, 2018], video [Kumar et al., 2019], Audio [Oord et al., 2018,

Prenger et al., 2019, Kim et al., 2018], text [Tran et al., 2019, Ziegler and Rush, 2019], graph

[Deng et al., 2019, Madhawa et al., 2019] and 3D point cloud [Yang et al., 2019].

Normalizing flows are also applied to model statistical distributions other than the

marginal data distribution as in the generation task. For example, in Müller et al. [2019],

the proposal distribution for importance sampling is modeled by normalizing flows. In Song

et al. [2017], the authors proposed A-NICE-MCMC, an MCMC algorithm similar to Hamil-

tonian Monto-Carlo but with a volume-preserving normalizing flow as the proposal. Another

way of applying flows to MCMC is to use the flow to reparameterize the target distribution

[Hoffman et al., 2019]. Normalizing flows can also usefully serve as posterior approxima-

tions over latent variables [Rezende and Mohamed, 2015, Kingma et al., 2016, Tomczak and

Welling, 2016, Berg et al., 2018]. Flows are also used in likelihood-free inference (also called

simulated-based inference). In likelihood-free inference, we assume to have a model param-

eterized by η, but we do not have the likelihood function p(x|η), rather we have a simulator
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that takes η and simulates observations x [Cranmer et al., 2020]. Such simulator-based mod-

els are common in scientific fields such as cosmology and high-energy physics. Normalizing

flows have shown impressive results on this task [Winkler et al., 2019, Gonçalves et al., 2020].

2.2.4 Limitations of Normalizing Flows

The normalizing flow model has one important limitation: its parameter efficiency. As

we discussed before, normalizing flows need to maintain invertibility and tractability of

computing the Jacobian determinant. As a result, their functional forms are constrained.

Although in theory normalizing flows can represent a broad class of distributions [Kong and

Chaudhuri, 2020], the actual expressivity is limited by their constrained parameterizations.

Typically the power of each transformation in the flow is very limited. For example, in

RealNVP or Glow, the transformation defining an affine coupling layer is just an affine

transformation. In residual flows [Chen et al., 2019, Behrmann et al., 2019], the inverse is

not defined explicitly but rather relies on the use of the Banach fixed point theorem, which

requires the flow to be contractive, i.e. with Lipschitz constant strictly less than unity.

The requirement on the Lipschitz constant strongly constrains the expressive power of the

model. As a result, usually, a normalizing flow requires a large number of transformation

blocks, resulting in a large number of parameters. It is observed that flow models are difficult

to train, and their sample quality and test data likelihood typically lag behind competing

models [Kingma and Dhariwal, 2018].

One model that alleviates normalizing flows’ issue of parameter inefficiency is continuous

normalizing flows [Chen et al., 2018a, Grathwohl et al., 2018], which will be discussed in

Chapter 5. Another idea is training normalizing flows on a latent space that has relatively

low dimensions. This idea will be studied comprehensively in Chapter 3.
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2.3 Energy-based Models

In Section 1.2.1, we discussed how to parameterize a distribution for maximum likelihood

training. The parameterization needs to satisfy the non-negativity and normalization con-

ditions in Equation 1.11. There are multiple ways to ensure such conditions. For example,

VAEs enforce the conditions by designing pθ(x) as the marginalization of a tractable joint

distribution pθ(x, z), and normalizing flows enforce the conditions by change of variables over

a base distribution, where the Jacobian determinant term ensures the normalization. While

these model parameterizations satisfy the requirements, specific designs are needed and the

model architectures are restricted, and hence the expressivity might be compromised due to

the restrictions. In addition, models with a tractable density that satisfies the conditions

assume that exact synthesis from the model can be done with a specified, tractable proce-

dure, but such an assumption is not always natural. In this chapter, we give an introduction

to Energy-based Models (EBMs), where the non-negativity and normalization conditions

are ensured directly by definition. EBMs are much less restrictive in functional form: in-

stead of specifying a normalized probability, they only specify the unnormalized negative

log-probability, called the energy function. After briefly reviewing the history of EBMs, we

will introduce the formulation of EBMs as well as several training strategies.

EBMs have a long history that dates back to the 80s when models called Boltzmann

Machines [Ackley et al., 1985] were proposed. The idea behind Boltzmann Machines is

taken from statistical physics and was popularized in the cognitive science community, due

to their locality and the Hebbian nature of their training algorithm which connects to neural

science. Later, Restricted Boltzmann Machines (RBMs) [Smolensky, 1986, Hinton, 2012]

were developed based on Boltzmann machines, with the restriction that their neurons must

form a bipartite graph. This restriction allows for more efficient training algorithms than

are available for the general class of Boltzmann machines, in particular the gradient-based

contrastive divergence algorithm [Carreira-Perpinan and Hinton, 2005], which is still widely
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used for training deep EBMs today. RBMs can also be used when combined with deep

learning. In particular, deep belief networks can be formed by ”stacking” RBMs and op-

tionally fine-tuning the resulting deep network with gradient descent and backpropagation

[Hinton, 2009]. EBMs were used originally in image analysis in Geman and Geman [1984].

Modern deep EBMs, which use deep neural networks to parameterize the energy function,

are developed by [Xie et al., 2016, Du and Mordatch, 2019].

2.3.1 Formulation of EBMs

The core idea behind EBMs is to define a function Eθ which is non-negative by construction,

but does not necessarily integrate to 1 over its support. To do so, we introduce the energy

function fθ. One way to define Eθ that satisfies non-negativity is by using an exponential

form:

Eθ(x) = e−fθ(x). (2.31)

There are several advantages to this form (over other possible choices that can ensure non-

negativity, such as Eθ(x) = fθ(x)2). The exponential formulation can capture very large

variations in density, as log-probability is the natural scale we want to work with, while other

formulations may need highly non-smooth fθ. In addition, this formulation aligns with the

intuition that x with low energy (high fθ(x)) is more likely.

The normalizing constraint can be satisfied by explicitly normalizing Eθ(x) by the total

integral Zθ:

Zθ =

∫
x
Eθ(x)dx. (2.32)

Note that Zθ does not depend on particular x’s as it is obtained from the integral. Since

the constant Zθ ensures the normalization constraints, it is called the normalizing constant.
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With the energy function and the normalizing constant in hand, we can define an EBM as

pθ(x) =
1

Zθ
e−fθ(x). (2.33)

When Zθ can be computed explicitly, we obtained a tractable model whose likelihood can

be computed. For example, for a Gaussian distribution, we have

Eµ,σ2(x) = e
− (x−µ)2

2σ2 ,

and the normalizing constant

Zµ,σ2 =

∫
x
e
− (x−µ)2

2σ2 dx =
√

2πσ2.

Similar derivations can be found for many familiar distributions, such as exponential, Pois-

son, gamma, etc. Those distributions belong to the so-called exponential family. However,

in general, EBMs do not require that Zθ can be computed analytically. In fact, EBMs allow

arbitrary energy functions fθ whose resulting normalizing constant cannot be computed or

even estimated in high-dimensional data space. For example, when fθ(x) is a neural network

that takes data x as its input and returns a scalar, certainly there is no easy way to estimate

Zθ. We will discuss how to train EBMs with unknown normalizing constant later.

Next, we discuss several important Energy-based Models.

Product of Experts: A Product of Experts model (PoE) [Hinton, 2002] combines

a number of individual component models (the experts) by taking their product and nor-

malizing the result. Each expert is defined as a possibly unnormalized probabilistic model

p̃θi :

pθ(x) =
1

Zθ

M∏
i=1

p̃θi ,
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where θ is the set of all parameters {θ1, · · · , θM}. Note that PoEs stand in contrast to

Mixture Models which combine expert models additively. Variants of PoEs have been applied

to compositional visual generation [Du et al., 2020], where each visual concept is modeled

by an expert, and sampling from the combined distribution correspond to compositions of

concepts.

Restricted BoltzmannMachines: Restricted Boltzmann Machines (RBMs) are EBMs

with latent variables. In RBMs, both the observable variable x and latent variable z are

assumed to be binary. For x ∈ {0, 1}n and z ∈ {0, 1}m, and RBM model expresses the joint

distribution as

pW,b,c(x, z) =
1

ZW,b,c
exp

(
xTWz + bTx + cT z

)
=

1

ZW,b,c
exp

 n∑
i=1

m∑
j=1

xizjwij +
n∑
i=1

xibi +
m∑
j=1

zjcj

 . (2.34)

The term ’restricted’ refers to the restriction that there are no visible-visible and hidden-

hidden connections, i.e., xixj or zizj terms in the model. Note that RBMs are special cases

of PoE models, since marginalizing z of an RBM model gives

P (x) =
1

Z̃

∏
i

exp (bixi)
∏
j

(
1 + exp

(
cj +

∑
i

Wijxi

))
. (2.35)

RBMs have been applied to face recognition [Teh and Hinton, 2000] and collaborative

filtering [Salakhutdinov et al., 2007]. in addition, Stacked RBMs are one of the first deep

generative models [Hinton, 2009]. In a Stacked RBM, bottom layer variables are pixel values,

and layers above represent “higher-level” features (corners, edges, etc). In the early years

of deep learning, neural networks for supervised learning had to be pre-trained as Stacked

RBMs to make them work.

Deep EBMs: One of the core ideas of deep learning is to replace heuristic designs
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with end-to-end learning. Deep EBMs follow this approach by directly modeling the energy

function fθ with a deep neural network that takes x as input and return the scalar energy.

When x is an image, the neural network is typically chosen to have convolutional structures.

Examples of deep EBMs include [Xie et al., 2016, Du and Mordatch, 2019].

2.3.2 Maximum Likelihood Training with MCMC

From the formulation of EBMs, we know that EBMs have the advantage that they are

extremely flexible, as they allow to plug in any energy function fθ. Such flexibility allows

EBM to model arbitrarily complex data distribution, but it also poses some challenges to

the training of EBMs, since many choices of fθ lead to an intractable normalizing constant.

In the following sections, we discuss several methods of training EBMs. The first method

we discuss is maximum likelihood training, which is the most widely used.

We cannot directly compute the likelihood of an EBM as in the maximum likelihood ap-

proach due to the intractable normalizing constant Zθ. Fortunately, it turns out that we can

still estimate the gradient of the log-likelihood with MCMC methods, allowing for maximum

likelihood training with gradient ascent. The derivation for the gradient estimation comes

from the contrastive divergence algorithm [Carreira-Perpinan and Hinton, 2005, Woodford,

2006]. We will provide the derivation below.

The gradient of the log-probability of an EBM in Equation 2.33 can be decomposed into

two terms:

∇θ log pθ(x) = −∇θfθ(x) −∇θ logZθ. (2.36)

The first term is straightforward to evaluate with automatic differentiation. However, the

second term is difficult to estimate, as the normalizing constant is intractable to compute.
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∇θ logZθ can be written as

∇θ logZθ = ∇θ log

∫
exp (−fθ(x)) dx

=
1∫

exp (−fθ(x)) dx
∇θ

∫
exp (−fθ(x)) dx

=
1∫

exp (−fθ(x)) dx

∫
∇θ exp (−fθ(x)) dx

=
1∫

exp (−fθ(x)) dx

∫
exp (−fθ(x)) (−∇θfθ(x)) dx

=

∫
exp (−fθ(x))

Zθ
(−∇θfθ(x)) dx

=

∫
pθ(x) (−∇θfθ(x)) dx

= Ex∼pθ(x) [−∇θfθ(x)] , (2.37)

where the second equation follows the gradient of the logarithm, the third equation inter-

changes the grdient and integral, and the fifth equation recognizes that Zθ =
∫

exp (−fθ(x)) dx.

Therefore, we obtain the gradient of the likelihood as:

∇θEx∼p(x) [log pθ(x)] = Ex∼p(x) [−∇θfθ(x)] + Ex∼pθ(x) [∇θfθ(x)] . (2.38)

Both expectations in Equation 2.38 can be approximated by Monte-Carlo samples. For the

first expectation, the positive phase, samples are drawn from the data distribution p(x), and

for the second expectation, the negative phase, samples are drawn from the model pθ(x)

itself.

Gradient estimation also gives an interesting interpretation for the maximum likelihood

training of EBMs. If we do gradient ascent with the gradient estimated by Equation 2.38,

the first term corresponds to minimizing the value of energy function fθ over real data,

which is equivalent to increasing the log-likelihood of real data. This is certainly the goal of

maximum likelihood training. Interestingly, the second term corresponds to maximizing the
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Figure 2.2: Illustration of maximum likelihood training of EBMs. Left: shape of the initial
energy function. Blue dots are real data, red dots are samples from the model. The training
update increases the energy of sampled data, and decreases the energy of real data. Right:
the energy function after the update. It assigns lower energy value to real data, and higher
energy value at sampled data ensure the normalization constraint.

value of energy function fθ over samples from the model, which is equivalent to decreasing

the log-likelihood of sampled data. The purpose of doing so is to ensure the normalizing

constraint: when pushing up the density of some regions, we have to push down the density

of some other regions to ensure the total integral is 1. This interpretation is illustrated in

Figure 2.2.

With gradient estimation, the only remaining thing is to approximate the second term

with samples from the model. As long as we can draw random samples from the model, we

have access to an unbiased Monte Carlo estimate of the log-likelihood gradient, allowing us

to optimize the parameters with stochastic gradient ascent. However, sampling from pθ itself

is non-trivial, as pθ is unnormalized. MCMC algorithms have to be used, and since we have

access to ∇x log p(x) (because ∇x logZθ = 0), gradient-based MCMC, such as Langevin

dynamics (introduced in Section 1.2.3) and Hamiltonian Monte Carlo [Neal et al., 2011]

are natural choices. For example, when using Langevin MCMC to sample from pθ(x), we

first draw an initial point x0 from a simple noise distribution and iterate with the Langevin

diffusion process for K steps
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xk+1 = xk + α∇x log pθ

(
xk
)

︸ ︷︷ ︸
=−∇xfθ(x)

+
√

2αϵk, ϵ ∼ N (0, I). (2.39)

As discussed in Section 1.2.3, xK is guaranteed to follow the pθ distribution if α → 0 and

K → ∞ under some regularity conditions. In practice, we have to use a small finite ϵ and

a finite number of steps K. There are two practical ways to run the Langevin dynamics for

training EBMs with maximum likelihood: persistent LD and short-run LD. In persistent LD,

we do not restart the MCMC chain when training on a new data point; rather, we initialize

a new MCMC using the state of the previous MCMC chain. This method can be further

improved by keeping multiple historical states of the MCMC chain in a replay buffer and

initializing new MCMC chains by randomly sampling from it [Du and Mordatch, 2019]. In

contrast, short-run LD [Nijkamp et al., 2019] initializes x0 from noise in every iteration and

runs the LD for a small number of steps.

2.3.3 Alternative Methods for Training EBMs

Besides the widely used maximum likelihood training, there are alternative methods for

training EBMs. In this section, we discuss two of them: denoising score matching and

noise-contrastive estimation.

Denoising Score Matching: We know that if two real-valued functions f and g have

the same first-order derivatives everywhere, then they only differ by a constant. When f and

g are the log-density of two distributions with with equal first-order derivatives, then by the

normalization requirement which requires that both ef(x) and eg(x) integrate to 1, we can

conclude that f(x) = g(x). As a result, one can learn an EBM by matching the derivatives

of its log-density to the derivatives of the log-density of the data distribution. The first-order

gradient of a log-density is called the score function of the corresponding distribution, so the
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idea of matching the derivatives is called score matching [Hyvärinen and Dayan, 2005]. The

score matching objective is to minimize the Fisher divergence between two distributions:

DF (p(x)∥pθ(x)) = Epdata (x)

[
1

2
∥∇x log pdata (x) −∇x log pθ(x)∥2

]
(2.40)

However, the first term on the right is generally impractical to calculate since it requires

knowing ∇x log p(x), the derivative of the density of the data distribution. It can be shown

that minimizing the Fisher divergence in Equation 2.40 is equivalent to minimizing the

following expression

Epdata(x)

[
tr (∇xsθ(x)) +

1

2
∥sθ(x)∥22

]
(2.41)

where we use sθ to denote ∇x log pθ. This objective does not need the derivative of the ground

truth density, but it requires evaluating higher-order derivatives, which is computationally

expensive.

One practical way to do score matching is denoising score matching (DSM) [Vincent,

2011], which involves a kernel density estimate of p(x). It first perturbs the data point x

with a pre-specified noise distribution qσ(x̃|x) and then employs score matching to estimate

the score of the perturbed data distribution qσ(x̃) ≜
∫
qσ(x̃|x)pdata (x)dx, which is the data

distribution p(x) convolved with the noise distribution. The objective is

DF (q(x̃)∥pθ(x̃)) = Eq(x̃)

[
1

2
∥∇x log q(x̃) −∇x log pθ(x̃)∥22

]
= Eq(x̃|x)p(x)

[
1

2
∥∇x log q(x̃|x) −∇x log pθ(x̃)∥22

]
+ constant , (2.42)

where the expectation is approximated by the samples, thus completely avoiding both the

unknown term ∇x log p(x) and computationally expensive second order derivatives. Note

that DSM is not a consistent objective because the optimal EBM matches the noisy dis-
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tribution qσ(x̃), not the data distribution p(x). This inconsistency becomes non-negligible

when qσ(x̃) significantly differs from p(x). One way to alleviate the inconsistency of DSM

is to choose qσ ≈ p, i.e., use a small noise perturbation. However, this often significantly

increases the variance of objective values. Variance-reducing techniques for training DSMs

are introduced in Wang et al. [2020].

We want to emphasize that DSM is closely connected to score-based generative models

[Song and Ermon, 2019], which will be introduced in Section 2.4.

Noise Contrastive Estimation: The high level ideas of Noise Contrastive Estimation

(NCE) [Gutmann and Hyvärinen, 2012] were introduced in Section 1.2.2. Here we briefly

introduce its application to training EBMs. Contrary to most other EBMs, now we treat

Zθ as a learnable scalar parameter. Suppose we have training examples {x1, · · · ,xN} from

p(x) and samples {x̃1, · · · , x̃N} from a noise distribution q(x), the parameter θ (including

the learnable estimate of normalizing constant) can be learned by maximizing the following

objective [Gutmann and Hyvärinen, 2012]:

J(θ) = Ex∼p(x)

[
log

pθ(x)

pθ(x) + q(x)

]
+ Ex∼q(x)

[
log

q(x)

pθ(x) + q(x)

]
. (2.43)

Note that we can compute pθ(x) exactly as we now have the normalizing constant. The

objective transforms the estimation of EBM into a classification problem.

The choice of the noise distribution q(x) is important. We want q(x) to satisfy the

following: (1) analytically tractable density; (2) easy to sample from; (3) close to data

distribution. In particular, (3) is important for learning a model over high-dimensional data.

If q(x) is not close to the data distribution, the classification problem would be too easy and

would not require pθ to learn much about the data. One choice of q(x) is normalizing flow

models [Gao et al., 2020].
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Figure 2.3: Illustration of denoising diffusion models. The forward process, denoted by q, is
a Markov chain of diffusion steps to slowly add random noise to data. The reverse process,
denoted by pθ, is a Markov chain that is learned to reverse the forward diffusion process and
recover clean data from noise.

2.4 Denoising Diffusion Models

Generative models that have been reviewed in this chapter share a common feature that

their generative process is a black box. VAEs and normalizing flows generate samples by

first sampling z from a noise distribution, and then z is passed through a neural network

to produce samples. EBMs generate samples by iteratively running Langevin dynamics,

however, there is no clear interpretation behind each step of LD. This section introduces

denoising diffusion models, which has a distinctive property that the generation process

corresponds to an explicit inversion of a so-called diffusion process that gradually perturbs

data into noise. More specifically, diffusion models define a Markov chain of diffusion steps to

slowly add random noise to data and then learn to reverse the diffusion process to construct

desired data samples from the noise. Therefore, the generation process of diffusion models

can be clearly interpreted as gradually denoising noisy observations into clean data. An

illustration for the denoising diffusion model is presented in Figure 2.3.

Diffusion models are inspired by non-equilibrium thermodynamics [Sohl-Dickstein et al.,

2015]. The idea of using a Markov chain to convert one distribution into another gradually

was adopted earlier in statistical physics [Jarzynski, 1997] and sequential Monte Carlo [Neal,

2001]. Sohl-Dickstein et al. [2015] first borrowed the idea for generative modeling and de-

signed models with a generative Markov chain which converts a simple known distribution

(e.g., a Gaussian) into the distribution using a diffusion process. Later, Ho et al. [2020]

improved and extended the model to make it capable of generating high-quality samples.
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Ho et al. [2020] also showed that a specific parameterization of diffusion models reveals an

equivalence with denoising score matching over multiple noise levels [Song and Ermon, 2019].

In their seminal paper, Song et al. [2021b] extend the discrete time diffusion process used

in denoising diffusion models to a continuous time diffusion process modeled by stochastic

differential equations and provide a unified framework to analyze denoising diffusion models

and score-based models.

Diffusion models have achieved state-of-the-art performance on many downstream tasks

and applications. For example, diffusion models beat GANs on the challenging task of

conditional generation on ImageNet dataset [Dhariwal and Nichol, 2021, Ho et al., 2022].

They also achieved impressive performance on audio synthesis [Chen et al., 2020a, Kong

et al., 2021, Popov et al., 2021], 3D shape generation [Cai et al., 2020] and music generation

[Mittal et al., 2021]. Diffusion models can also be combined with other generative models such

as VAEs [Vahdat et al., 2021] and EBMs [Gao et al., 2021]. In addition, diffusion models can

be a powerful tool to solve a variety of inverse problems including super resolution [Saharia

et al., 2021b], image inpainting [Saharia et al., 2021b, Lugmayr et al., 2022] and medical

image reconstruction [Song et al., 2022, Jalal et al., 2021].

In what follows, we will provide an overview of denoising diffusion models. We will start

with the formulation of the model, followed by the process of training and sampling from

the model. Finally, we will discuss the extension of denoising diffusion models to continuous

time space.

2.4.1 Formulation of Diffusion Models

As discussed earlier, diffusion models have a forward process that gradually perturbs data

into noise. Specifically, given a data point sampled from the real data distribution x0 ∼ q(x),

the forward process adds small amount of Gaussian noise to the sample in each of T steps,

producing a sequence of noisy samples x1, · · · ,xT . Each step is assumed to be a conditional
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Gaussian distribution

q (xt|xt−1) = N
(
xt;
√

1 − βtxt−1, βtI
)
, (2.44)

where the variance schedule βt, t = 1, · · · , T can be seen as step sizes. The variance schedule

is carefully chosen so that xT does not contain any information about x0 and is a sample

from white noise distribution. Note that the process is a Markov chain, as xt only depends

on xt−1 and no previous steps. The joint distribution of x1:T given the clean data x0 can

be written as

q (x1:T |x0) =
T∏
t=1

q (xt|xt−1) . (2.45)

One nice property of the forward process is that given initial clean data x0, we can sample

xt for arbitrary time step t in closed form. Denote αt = 1 − βt and ᾱt =
∏T
i=1 αi, we have

xt =
√
αtxt−1 +

√
1 − αtϵt−1

=
√
αtαt−1xt−2 +

√
αt(1 − αt−1)ϵt−2 +

√
1 − αtϵt−1

=
√
αtαt−1xt−2 +

√
1 − αtαt−1ϵt−2

= . . .

=
√
ᾱtx0 +

√
1 − ᾱtϵ,

where ϵt−1, ϵt−2, ϵt−2 and ϵ are all sampled from N (0, I). The third equation uses that

fact that if X and Y are two independent random variables with X ∼ N
(
µX , σ

2
X

)
and

Y ∼ N
(
µY , σ

2
Y

)
, then Z = X+Y is distributed as Z ∼ N

(
µX + µY , σ

2
X + σ2Y

)
. Therefore,

we have

q (xt|x0) = N
(
xt;

√
ᾱtx0, (1 − ᾱt) I

)
. (2.46)
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The reverse process (or backward process) is another Markov chain whose goal is to

reverse the forward process. Note that if we can sample from q(xt−1|xt), we can recreate a

true sample from a Gaussian noise input xT ∼ N (0, I). However, we cannot directly sample

from q(xt−1|xt), as we cannot easily go from higher entropy to lower entropy. The reverse

process aims to approximate these conditional probabilities q(xt−1|xt) with a parameterized

model pθ. We assume the model also has the form of Gaussian conditional distributions:

pθ (xt−1|xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) , (2.47)

and

pθ (x0:T ) = p (xT )
T∏
t=1

pθ (xt−1|xt) . (2.48)

Besides the conditional distribution in the forward and reverse process, there is also an

important distribution that will be used later: q (xt−1|xt,x0), the posterior distribution

given initial point x0. It is noteworthy that this reverse conditional probability is tractable

when conditioned on x0. To derive the posterior, we first apply the Bayes rule:

q (xt−1|xt,x0) =
q (xt|xt−1,x0) q (xt−1|x0)

q (xt|x0)

=
q (xt|xt−1) q (xt−1|x0)

q (xt|x0)
, (2.49)

where the second equation follows from the Markov property of the forward process. Since all

three terms in Equation 2.49 are Gaussians, the posterior q (xt−1|xt,x0) is also a Gaussian

distribution, and it can be written as

q (xt−1|xt,x0) = N
(
xt−1; µ̃ (xt,x0) , β̃tI

)
. (2.50)
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By plugging in the expression for q (xt|xt−1) in Equation 2.44 and the expression of q (xt|x0)

and q (xt−1|x0) in Equation 2.46 into Equation 2.50, together with the fact that x0 =

1√
ᾱt

(
xt −

√
1 − ᾱtzt

)
, we can obtain

µ̃t (xt,x0) :=

√
αt−1βt

1 − ᾱt
x0 +

√
αt (1 − ᾱt−1)

1 − ᾱt
xt and β̃t :=

1 − ᾱt−1

1 − ᾱt
βt. (2.51)

2.4.2 Training Denoising Diffusion Models

Given the parameterized reverse process in Equation 2.47, the training objective is to find

means µθ (xt, t) and variances Σθ (xt, t) that maximize the data likelihood under the model:

pθ (x0) =

∫
pθ (x0:T ) dx1:T ,

where pθ (x0:T ) is given in Equation 2.48. We can treat x1:T as latent variables, and obtain

the following variational lower bound:

log pθ (x0) ≥ log pθ (x0) −DKL (q (x1:T |x0) ∥pθ (x1:T |x0))

= log pθ (x0) − Ex1:T∼q(x1:T |x0)

[
log

q (x1:T |x0)

pθ (x0:T ) /pθ (x0)

]
= log pθ (x0) − Eq

[
log

q (x1:T |x0)

pθ (x0:T )
+ log pθ (x0)

]
= Eq

[
− log

q (x1:T |x0)

pθ (x0:T )

]
. (2.52)

Therefore, we obtain the training objective:

min
θ

Lθ = Eq
[
− log

pθ (x0:T )

q (x1:T |x0)

]
(2.53)

The objective can be further rewritten to be a combination of several KL-divergence and
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entropy terms, as discussed in Appendix A in Ho et al. [2020]. One way to rewrite Lθ is

L = Eq

− log p (xT ) −
∑
t≥1

log
pθ (xt−1|xt)
q (xt|xt−1)


= Eq

− log p (xT ) −
∑
t≥1

log
pθ (xt−1|xt)
q (xt−1|xt)

· q (xt−1)

q (xt)


= Eq

− log
p (xT )

q (xT )
−
∑
t≥1

log
pθ (xt−1|xt)
q (xt−1|xt)

− log q (x0)


= DKL (q (xT ) ∥p (xT )) + Eq

∑
t≥1

DKL (q (xt−1|xt) ∥pθ (xt−1|xt))

+H (x0) . (2.54)

Note that in the last equation, DKL (q (xT ) ∥p (xT )) is constant during training, as we assume

both q (xT ) and p (xT ) are white noise distributions. In addition, H (x0) is independent of

the parameter θ. Therefore, the objective is to minimize

Eq

∑
t≥1

DKL (q (xt−1|xt) ∥pθ (xt−1|xt))

 ,
which exactly corresponds to the goal of the denoising diffusion model, which is that we want

our parameterized reverse process pθ (xt−1|xt) to match the reverse of the forward process

q (xt−1|xt). However, since we never know the true reverse process q (xt−1|xt), we cannot

directly minimize Equation 2.54 to train the model.

Sohl-Dickstein et al. [2015] show that Lθ can be written in an alternative form with

tractable distributions. We include the derivation here.
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L = Eq
[
− log

pθ (x0:T )

q (x1:T |x0)

]

= Eq

− log p (xT ) −
∑
t≥1

log
pθ (xt−1|xt)
q (xt|xt−1)


= Eq

− log p (xT ) −
∑
t≥2

log
pθ (xt−1|xt)
q (xt|xt−1)

− log
pθ (x0|x1)

q (x1|x0)


= Eq

− log p (xT ) −
∑
t≥2

log
pθ (xt−1|xt)
q (xt−1|xt,x0)

· q (xt−1|x0)

q (xt|x0)
− log

pθ (x0|x1)

q (x1|x0)


= Eq

− log pθ (xT ) +
T∑
t=2

log
q (xt−1|xt,x0)

pθ (xt−1|xt)
+ log

q (xT |x0)

q (x1|x0)
+ log

q (x1|x0)

pθ (x0|x1)


= Eq

− log
p (xT )

q (xT |x0)
−
∑
t≥2

log
pθ (xt−1|xt)
q (xt−1|xt,x0)

− log pθ (x0|x1)


= Eq[DKL (q (xT | x0) ∥pθ (xT ))︸ ︷︷ ︸

LT

+
T∑
t=2

DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt))︸ ︷︷ ︸
Lt−1

(2.55)

− log pθ (x0 | x1)︸ ︷︷ ︸
L0

] (2.56)

Again, the first term is constant during training. The expression for Lθ in Equation 2.55

rewrites q (xt|xt−1) as

q (xt|xt−1) = q (xt|xt−1,x0) =
q (xt−1|xt,x0) q (xt|x0)

q (xt−1|x0)
,

where the first equality follows from the Markov property. Therefore, we can express the dis-

tribution with the posterior distribution q (xt−1|xt,x0) in Equation 2.50, which is a tractable

Gaussian distribution. Note that each KL-divergence term in Equation 2.55 compares two

Gaussian distributions and therefore they can be computed in closed form.

61



Next, we discuss how to parameterize the means µθ (xt, t) and variance Σθ (xt, t) of

pθ (xt−1|xt). Ho et al. [2020] set Σθ (xt, t) = σ2t I, where σ2t s are untrained time dependent

constants. σ2t is set to be either βt, the variance in the forward process or β̃t, the variance

of the posterior distribution. In contrast, [Nichol and Dhariwal, 2021] propose to learn

Σθ (xt, t) as an interpolation between βt and β̃t. For simplicity, we follow the setting of Ho

et al. [2020].

For the means µθ (xt, t), we want them to approximate the posterior mean µ̃t (xt,x0).

Naively, we can parametrize µθ (xt, t) with a neural network and minimize

Lt−1 = Eq

[
1

2σ2t
∥µ̃t (xt,x0) − µθ (xt, t)∥2

]
+ C (2.57)

for each time step. However, Ho et al. [2020] observe that instead of learning µθ (xt, t) to

directly predict the posterior means, parameterizing the network with some transformations

leads to better results. Firstly, from Equation 2.46, we can express x0 in terms of xt and zt:

x0 =
1√
ᾱt

(
xt −

√
1 − ᾱtzt

)
. (2.58)

Plug in the expression of x0 into the expression of µ̃t (xt,x0) in Equation 2.51, we have

µ̃t =

√
αt (1 − ᾱt−1)

1 − ᾱt
xt +

√
αt−1βt

1 − ᾱt

1√
ᾱt

(
xt −

√
1 − ᾱtzt

)
=

1
√
αt

(
xt −

βt√
1 − ᾱt

zt

)
.

(2.59)

As a result, given xt, we only need the noise zt to obtain the posterior mean. Since xt is

available during training, we can use a network zθ to parametrize the noise, and hence we

have

µθ (xt, t) =
1

√
αt

(
xt −

βt√
1 − ᾱt

zθ (xt, t)

)
. (2.60)
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Plug in the expression of µ̃t in Equation 2.59 and the expression of µθ (xt, t) in Equation

2.60 into the objective in Equation 2.57, we obtain the final training objective

Ex0,z

[
β2t

2σ2t αt (1 − ᾱt)

∥∥∥zt − zθ

(√
ᾱtx0 +

√
1 − ᾱtzt, t

)∥∥∥2] . (2.61)

The training can be interpreted as “noise prediction”: given noisy observation xt obtained

from perturbing clean data x0, the network takes xt and t as inputs, and tries to predict the

noise zt that perturbs x0 into xt.

Giving a well-trained noise prediction network zθ (xt, t), we can sample xt−1 ∼ pθ (xt−1|xt)

by computing

xt−1 =
1

√
αt

(
xt −

βt√
1 − ᾱt

zθ (xt, t)

)
+ σtz, (2.62)

where z ∼ N (0, I). Starting from a white noise xT and iteratively running Equation 2.62,

we can obtain a clean sample x0.

2.4.3 Extension of Diffusion Models to Continuous Time

One important hyper-parameter of diffusion models is T , the number of time steps. It is

observed that a large number of steps is needed for high sample quality. A larger number

of steps means a smaller step size, which in turn makes the modeling more accurate as each

time conditioned model only needs to predict a small denoising step. When the step size

approaches 0, we obtain the continuous-time diffusion process, which can be described by

the dynamics of a stochastic differential equation (SDE).

Song et al. [2021b] extend diffusion models to continuous time using the tool of SDEs,

and their models are called score SDE models. In particular, the diffusion process can be
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modeled as the solution to an Ito SDE

dx = f(x, t)dt+ g(t)dw, (2.63)

where f(·, t) : Rd → Rd is a vector-valued function called the drift coefficient, g(t) ∈ R is a

real-valued function called the diffusion coefficient, and dw can be viewed as infinitesimal

white noise. Similar to the discrete case, let p0(x) = p(x) as the data distribution, after

perturbing p0(x) with the stochastic process for a sufficiently long time T , pT (x) becomes a

tractable noise distribution.

We want to sample xT from the noise distribution pT (x), and reverse the process to

obtain samples from x0. Remarkably, given the forward diffusion process in Equation 2.63,

we have an associated reverse process which is also also a diffusion process, running backward

in time and given by the reverse-time SDE [Anderson, 1982]

dx =
[
f(x, t) − g2(t)∇x log pt(x)

]
dt+ g(t)dw. (2.64)

Therefore, if we can estimate the score function ∇x log pt(x), we can simulate Equation

2.64 to generate samples. In order to estimate ∇x log pt(x), Song et al. [2021b] adopt

score matching and propose to train a time-dependent score-based model sθ(x, t) such that

sθ(x, t) ≈ ∇x log pt(x). The training objective is

Et∈U(0,T )Ept(x)
[
λ(t) ∥∇x log pt(x) − sθ(x, t)∥22

]
, (2.65)

where U(0, T ) is the uniform distribution over the time interval [0, T ] and λ is a positive

weighting function. Due to the intractability of ∇x log pt(x), the actual training objective,
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as done in Section 2.3.3, uses denoising score matching:

Et∈U(0,T )Ex(0)∼p0(x)Ex(t)∼p0t(x(t)|x(0))

[
λ(t)

∥∥∥sθ(x(t), t) −∇x(t) log p0t(x(t) | x(0))
∥∥∥2
2

]
.

(2.66)

After training the time-dependent score matching model, we can simulate the reverse SDE

in Equation 2.64 with numerical SDE solvers. For example, the simplest numerical SDE

solver is the Euler-Maruyama discretization.

One crucial component of score SDE models is the design of the forward diffusion process.

There are multiple ways to design the process. For example, the discrete diffusion process

in Equation 2.44 corresponds to the discretization of the following SDE:

dx = −1

2
β(t)xdt+

√
β(t)dw. (2.67)

The noise conditional score matching model introduced in Song and Ermon [2019] corre-

sponds to the following SDE:

dx =

√
d
[
σ2(t)

]
dt

dw. (2.68)

Therefore, Song et al. [2021b] unify denoising diffusion models and denoising score matching

models under the framework of score SDE models.

2.4.4 Limitations of Diffusion Models

The most significant limitation of diffusion models is their slow sampling speed. It is very

slow to generate samples from a denoising diffusion model by iteratively running Equation

2.62, as T can be up to one or a few thousand steps. Each step involves a network evaluation

of zθ(xt, t), which is expensive. For example, Song et al. [2020a] observe that it takes around
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20 hours to sample 50k images of size 32 × 32 from a diffusion model on an Nvidia 2080 Ti

GPU, while it takes less than a minute to do so from a GAN. The slow sampling speed makes

diffusion models hard to apply to tasks that require real time synthesis, such as interactive

image editing. In continuous time space, score SDE models do not have an explicit definition

of the time step. However, sampling from them requires numerically solving the reverse SDE

by discretization, and each discretization step still requires a network evaluation. To solve

the SDE accurately, a large number of discretization steps is needed.

One way to reduce the sampling time is to run a strided sampling schedule, where sev-

eral steps in the forward process are combined into a single step in the reverse process,

with appropriately adjusted mean and variance parameters. In the score SDE model, this

corresponds to using a coarse discretization scheme to solve the reverse SDE. However, this

approach leads to significantly worse sample quality.

We will discuss other methods that aim to improve the sampling speed of diffusion models

in Section 6.

2.5 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] are perhaps the most

successful and widely used deep generative models. They have shown great results in many

generative tasks that replicate the real-world rich content such as images [Brock et al., 2018,

Karras et al., 2017, 2019, 2021], natural language [Subramanian et al., 2017], speech [Kong

et al., 2020] and music [Yang et al., 2017]. We postponed the introduction of GANs until

the end of this chapter because the majority of this dissertation focuses on likelihood-based

generative models. The high-level idea behind GANs has been discussed in Section 1.2.2 as

part of the density ratio approach for training generative models. In what follows, we will

give a more in-depth introduction to GANs.

A GAN consists of two models:
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Figure 2.4: Illustration of GANs. The discriminator tries to distinguish real and fake samples,
while the generator generates samples that can fool the discriminator.

• A discriminator D estimates the probability of a given sample coming from the real

data distribution. It works as a critic and is optimized to distinguish fake samples from

the real ones.

• A generator G outputs synthetic samples given a noise variable input z. It is trained to

capture the real data distribution so that the samples generated by the G can be as real

as possible, or in other words, can fool the discriminator to return a high probability

of being real.

These two models compete against each other during the training process: the generator G

is trying hard to confuse the discriminator, while the critic model D is trying hard not to

be confused. This zero-sum game between the two models motivates both to improve their

functionalities. Figure 2.4 provides a illustration of GANs.

At the beginning of Chapter 2, we mentioned that, unlike explicit generative models that

are discussed in previous sections, GANs belong to the category of implicit generative models.

Here we will provide a detailed explanation of implicit generative models. The distinctive

property of implicit generative models is that they get rid of prescribed distributions. Some

explicit models, such as VAEs, share some similarities with GANs in that they both have a

decoder structure, and the decoder takes latent variables z as its input. However, a VAE’s

decoder has a prescribed distribution, as we let pθ(x|z) be a Gaussian. In contrast, a GAN’s
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decoder returns only a single point. In other words, the conditional distribution is a Dirac’s

delta

pθ(x | z) = δ (x−Gθ(z)) , (2.69)

where Gθ is the decoder network. This is equivalent to say that instead of a Gaussian (i.e.,

a mean and a variance), Gθ outputs the mean only. It is still possible to obtain the marginal

distribution pθ(x), as

pθ(x) =

∫
δ (x−Gθ(z)) p(z)dz. (2.70)

The marginal distribution is an infinite mixture of delta peaks, and a single z in the latent

space corresponds to a single x in the data space. Imagine that for every z, we plot Gθ(z)

in the data space, then the data space will be covered by infinitely many points, and some

regions will be denser than the others. The resulting density still makes pθ(x) a valid

distribution, but we do not know the exact form of pθ(x). This kind of distribution modeling

is known as implicit modeling.

Explicit models with a prescribed distribution can be trained by maximum likelihood

(minimizing the KL divergence), however, the Dirac’s delta distribution in implicit models is

ill-defined and cannot be used in many probability measures, including the KL divergence.

Luckily, we do not need to stick to the KL divergence. Instead, we can use other metrics that

look at a set of points (i.e., distributions represented by a set of points), including kernel-

based Minimum Mean Discrepancy (MMD) [Gretton et al., 2006] and other divergences

[Van Erven and Harremos, 2014]. GANs use adversarial training as a surrogate to minimize

the distance between (implicit) pθ(x) and true data distribution p(x), and the exact type of

distance depends on the particular choice of GAN loss.

In what follows, we will introduce the training objective of GANs and try to formulate
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GAN training in the context of divergence minimization. We will also discuss the challenges

of GAN training, as well as some important GAN variants.

2.5.1 Understanding the Training of GANs

The discriminator Dϕ : X → [0, 1] takes an object x in the data space and returns a

probability whether it is real. The generator Gθ : Z → X takes a noise z and turns it into

an object x. Since the discriminator can be seen as a classifier, we can optimize the binary

cross-entropy loss function in the following form

Lϕ,θ = Ex∼pdata(x)
[
logDϕ(x)

]
+ Ex̂∼pθ(x)

[
log(1 −Dϕ(x̂))

]
(2.71)

= Ex∼p(x)
[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1 −Dϕ(Gθ(z)))

]
. (2.72)

On one hand, we want to make sure the discriminator Dϕ assigns high probability of being

real over samples from the data distribution by maximizing Ex∼pdata(x)
[
logDϕ(x)

]
w.r.t ϕ.

Meanwhile, given a fake sample Gθ(z) where z ∼ p(z) the discriminator is expected to output

a probability Dϕ (Gθ(z)) close to zero by maximizing Ez∼p(z)
[
log(1 −Dϕ(Gθ(z)))

]
w.r.t ϕ.

On the other hand, the generator is trained to increase the chances of Dϕ producing a fake ex-

ample with a high probability of looking real, thus to minimize Ez∼p(z)
[
log(1 −Dϕ(Gθ(z)))

]
w.r.t. θ. When combining both aspects together, Dϕ and Gθ are playing a minimax game

in which we should optimize the following loss function

min
θ

max
ϕ

Lϕ,θ = Ex∼p(x)
[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1 −Dϕ(Gθ(z)))

]
. (2.73)

Optimal discriminator: To better understand the training of GANs, we derive the

optimal solution of the discriminator when the generator is fixed. The training objective of

the discriminator corresponds to finding the optimal Bayesian classifier that distinguishes

samples from pdata(x) and pθ(x), given that the prior is 1
2 for each source. In this case, when
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the generator is fixed, the optimal classifier value is

D∗
ϕ(x) =

pdata(x)

pdata(x) + pθ(x)
∈ [0, 1].

Furthermore, we can derive the optimal value of the objective function when the generator

and discriminator are both optimal. We first rewrite the objective in Equation 2.71 in the

integral form (assuming we have the expression of pdata(x) and pθ(x), although we do not):

D∗
ϕ(x) =

∫
x
pdata(x) log(Dϕ(x)) + pθ(x) log(1 −Dϕ(x))dx. (2.74)

When the generator is trained to its optimal, pdata(x) is very close to pθ(x), and in that

case, D∗
ϕ(x) ≈ 1

2 , i.e., the discriminator cannot distinguish between real and fake samples.

In this case, given the optimal value of D∗
ϕ(x), the resulting optimal value of the objective is

∫
x

(
pdata(x) log

(
D∗
ϕ(x)

)
+ pθ(x) log

(
1 −D∗

ϕ(x)
))

dx

= log
1

2

∫
x
pdata(x)dx + log

1

2

∫
x
pθ(x)dx

= −2 log 2.

(2.75)

For convenience, we denote the objective in Equation 2.74 with the optimal discriminator

value in Equation 2.73 as V (G,D∗).

Connection to Jensen-Shannon divergence minimization: We also show that

when the discriminator is optimal, the loss function can be expressed in terms of a Jensen-

Shannon divergence term. First we will define Jensen-Shannon (JS) divergence. Recall the

definition of KL divergence:

DKL(p(x)∥q(x)) =

∫
p(x) log

p(x)

q(x)
dx, (2.76)

70



and note that KL divergence is not symmetric. JS divergence is a symmetric measure of

similarity between two probability distributions, and it is defined by

DJS(p∥q) =
1

2
DKL

(
p∥p+ q

2

)
+

1

2
DKL

(
q∥p+ q

2

)
. (2.77)

Similar to KL divergence, DJS(p∥q) if and only if p = q. With this definition in hand, the

JS divergence between pdata(x) and pθ(x) can be computed as

DJS (pdata∥pθ) =
1

2
DKL

(
pdata∥

pdata + pθ
2

)
+

1

2
DKL

(
pθ∥

pdata + pθ
2

)
=

1

2

(
log 2 +

∫
x
pdata(x) log

pdata(x)

pdata + pθ(x)
dx

)
+

1

2

(
log 2 +

∫
x
pθ(x) log

pθ(x)

pdata + pθ(x)
dx

)
=

1

2
(log 4 + V (G,D∗)) ,

(2.78)

where the last line follows from the definition of V (G,D∗). Therefore,

V (G,D∗) = 2DJS
(
pr∥pg

)
− 2 log 2. (2.79)

Essentially the training objective of GANs quantifies the similarity between the pθ(x) and

the data distribution by JS divergence when the discriminator is optimal. In addition, the

best generator will minimize the JS divergence to 0, leading to the optimal loss value −2 log 2

in the equilibrium.

2.5.2 Challenges in Training GANs

Although GANs have had great success in many domains, there are many challenges in

training GANs. The training process is unstable, and there are multiple possible reasons.

We will discuss several of these, in particular, the biggest issue with GANs: the mode
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collapse.

Challenges of min-max optimization: In GAN training, two models are trained

simultaneously to find a Nash equilibrium of a two-player non-cooperative game. Unlike

most machine learning problems whose objective is a simple minimization or maximization,

the objective of GANs is a min-max problem. Each model updates independently with no

respect to the other player in the game with the gradient descent-ascent (GDA) technique

[Lin et al., 2020]. Updating the gradient of both models independently concurrently cannot

guarantee convergence to a Nash equilibrium, and there are many counter-examples with

simple forms of the objective. The non-convergence may lead to instability during training,

as discussed by [Salimans et al., 2016]. Min-max optimization (and in particular with non

convex-concave objective) is an active research direction in optimization theory [Daskalakis

and Panageas, 2018, Farnia and Ozdaglar, 2020, Wang et al., 2019]. Still, so far, there is no

principled way to solve the problem.

Imbalance between discriminator and generator: It is important to keep a balance

between the discriminator and the generator, and it would be problematic if the discriminator

becomes too strong. Imagine a perfect discriminator which can always classify real and fake

samples. Then we have D(x) = 1 for all x ∼ pdata(x) and D(x) = 0 for all x ∼ pθ(x), the

loss function falls to zero and we end up with no gradient to update the loss during learning

iterations. Therefore, we have to keep a subtle balance: if the discriminator is too weak, the

generator does not have accurate feedback, and the loss function cannot reflect the real or

fake probability; If the discriminator does a great job, the gradient of the loss function drops

down to close to zero, and the learning gets stuck. Note that it is always easier to do binary

classification than generate new samples, so oftentimes, the discriminator is too strong. As

a result, a variety of regularization techniques that restrict the power of the discriminator

are proposed [Mescheder et al., 2018, Zhang et al., 2019, Kurach et al., 2019]. However, it is

still difficult to keep the balance between two losses.
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Figure 2.5: An example of mode collapse. The generator produce repeated patterns.

Mode collapse: During training, the generator may collapse to a setting where it always

produces the same outputs. This is a common failure case for GANs, commonly referred

to as mode collapse. Even though the generator learns to fool the discriminator, it fails to

represent the complex data distribution and gets stuck in a small space with extremely low

variety. See Figure 2.5 for an example.

The cause of mode collapse is not completely clear. One explanation is that the ob-

jective function of training GANs has a reverse KL divergence component (part of the JS

divergence). Minimizing the reverse KL divergence DKL (pθ∥pdata) will encourage the model

to cover some of the modes in data distribution since there is no penalty for not covering

pdata when there is no probability mass under pθ. In contrast, maximum likelihood training,

which minimizes the forward KL divergence DKL (pdata∥pθ), will penalize any mismatch

where pdata(x) is not zero, and hence the model is encouraged to cover all the modes of

pdata(x). As a result, models trained by maximum likelihood tend to have better mode

coverage than GANs. Several methods are proposed to alleviate the mode collapse issue of

GANs [Srivastava et al., 2017, Dieng et al., 2019], but mode collapse is still one of the biggest

challenges of GAN training.
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2.5.3 Important GAN variants

Because of the popularity of GANs, there are multiple attempts to further improve the

GAN model. In this section, we introduce two important variants of GANs. The first one,

Wasserstein GAN [Arjovsky et al., 2017], proposes a new training objective based on the

Wasserstein distance between two distributions. The second one, Style GAN [Karras et al.,

2019], focuses on architectural design and proposes several important modifications to the

implementation of GANs, which lead to state-of-the-art sample quality.

Wasserstein GAN: The optimization of the original GAN objective is difficult, due to

generator’s vanishing gradient problem caused by a powerful discriminator, as described in

the previous section. [Goodfellow et al., 2014] propose a slightly different generator loss:

max
θ

Ez∼q(z)[logD(Gθ(z))],

which is called Non-Saturating GAN loss. While this loss function can address the vanishing

gradient problem, Arjovsky and Bottou [2017] illustrates that it has a large variance of

gradients that makes the training unstable.

To obtain a GAN objective that is easier to optimize, Arjovsky et al. [2017] propose

Wasserstein GAN (W-GAN), which is based on the concept of Wasserstein distance (also

called the Earth Mover distance). Wasserstein distance between two distributions p and

q is the minimum cost of transporting mass in converting distribution q to distribution p.

The exact form of Wasserstein distance depends on the choice of cost. For example, the

commonly used Wasserstein-1 distance is defined by

W (p, q) = inf
γ∈Π(p,q)

E(x,y)∼γ [∥x− y∥], (2.80)

where Π (p, q) denotes the set of all joint distributions γ(x,y) whose marginals are p and

q, respectively. By the Kantorovich-Rubinstein duality [Villani, 2009], the Wasserstein-1
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distance can be equivalently written in the following form:

W (p, q) = sup
∥f∥L≤1

Ex∼p(x)[f(x)] − Ex∼q(x)[f(x)], (2.81)

where the constraint on f says that f must be a 1-Lipschitz function.

In W-GAN, the Wasserstein distance is computed between pdata(x) and pθ(x). The core

idea behind W-GAN is to train a generator that minimizes the Wasserstein distance between

pdata and pθ. Since computing the distance itself can be formulated as a maximization

problem, the whole objective is a min-max problem, and hence the model is a GAN. The

Lipschitz function f in Equation 2.81 can be seen as a discriminator, although it is not a

direct critic of telling the fake samples apart from the real ones, and it does not need to

output a probability (which means that the output does not need to be in [0, 1]). For a

better connection with previous GAN models, we denote the function by Dϕ. The objective

for training Dϕ is

max
ϕ

Ex∼pdata(x)[Dϕ(x)] − Ez∼p(z)[Dϕ(Gθ(z))], (2.82)

while keeping the constraint that ∥Dϕ∥L ≤ 1. Optimizing overall Lipschitz functions is

impossible, and the solution is to parameterize them through a deep neural network, con-

strained to have a Lipschitz constant less than 1. Optimizing this objective corresponds to

computing the Wasserstein distance. The objective for training the generator is to minimize

the Wasserstein distance, which is done by minimizing the same objective w.r.t θ:

min
θ

−Ez∼p(z)[Dϕ(Gθ(z))]. (2.83)

One subtle point in training W-GAN is to maintain the Lipschitz constant of Dϕ. In the

original paper of Arjovsky et al. [2017], this is implemented by gradient clipping. Alternative
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methods such as gradient penalty [Gulrajani et al., 2017] and spectral normalization [Miyato

et al., 2018] are proposed later. It is observed that the training of W-GAN is more stable,

and the mode collapse issue is greatly alleviated.

It is also noteworthy that in W-GAN, the gradient of the objective for training Dϕ is

very similar to Equation 2.38, the gradient estimate of the maximum likelihood objective for

training EBMs. Such a connection will be utilized in Section 5.

Style GAN: While most of the GAN research focuses on optimization, such as new

regularization terms [Zhang et al., 2019, Miyato et al., 2018] and new training losses [Arjovsky

and Bottou, 2017, Mao et al., 2017], Style GAN [Karras et al., 2019] focuses on the design

of the network. Previous GANs had trouble generating high-quality large images (e.g.,

1024 × 1024), and in particular, they may fail to capture the details of high-resolution

images. Style GAN re-designs the generator architecture and proposes novel ways to control

the image synthesis process. Here we will introduce some essential features of Style GAN.

The first feature is the mapping network, which is a multi-layer, fully connected network

that transforms the input noise vector z into the so-called style vector w before sending

it to the main generator. Specifically, in the original Style GAN, the mapping network

consists of 8 fully connected layers, and its output w is of the same size as the noise input

layer (512 × 1). The purpose of the mapping network is to encode the input vector into an

intermediate vector whose different elements control different visual features.

The second feature is the adaptive instance normalization module. In short, the vector

w obtained from the mapping network is injected into the generator by adaptive instance

normalization, which is motivated by the literature on style transfer [Huang and Belongie,

2017]. The module is added to each resolution level and aims to define the visual expression

of the features in that level. The adaptive instance normalization module works as follows.

First, an instance normalization operation is performed, where each channel of the convo-

lution layer output is first normalized to mean 0 and variance 1. Then, the intermediate
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Figure 2.6: Illustration of Style GAN. Figure taken from Karras et al. [2019]. Latent vector
z is first mapped into an intermediate latent space W , which then controls the generator
through adaptive instance normalization (AdaIN) at each convolution layer.

vector w is transformed using a fully-connected layer to obtain the w-dependent shift and

scale parameters µ(w) and σ(w). Finally, the normalized convolutional output is affinely

transformed by µ(w) and σ(w).

The third feature is that Style GAN removes the standard input of noise vector z to

the generator. Most GANs use the random latent vector z as the input to the generator.

In contrast, Style GAN injects latent variables into the generator with adaptive instance

normalization. Therefore, the input to the generator (where the tower of convolutional

layers starts) is replaced by a shared but learnable constant. Karras et al. [2019] argue that

passing latent information to the network as normalization controllers instead of as inputs

improves the performance of modeling fine-grained details of images.

The structure of Style GAN’s generator is demonstrated in Figure 2.6. The ideas behind
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the design of Style GAN are widely used, and in particular, we borrow many elements of

Style GAN to the model presented in Section 6.

2.6 Summary

In this chapter, we reviewed 5 popular deep generative models. In summary, we will list

the pros and cons of each model in this section. Note the main theme of this dissertation is

designing new generative models by combining different existing models, and therefore it is

critical to know the advantages and disadvantages of each type of model. At the end of this

section, we will highlight the motivation for composing different generative models.

• Variational Auto-encoders

– Pros: tractable estimate of likelihood; stable training; fast sampling (1 network

evaluation); provide low dimensional latent representations.

– Cons: low sample quality due to the prior hole issue.

• Normalizing Flows:

– Pros: tractable and exact likelihood computation; fast sampling (1 network eval-

uation).

– Cons: low parameter efficiency due to restricted structure; difficult to train; low

sample quality.

• Energy-based Models:

– Pros: no constraint on the functional form; less affected by the over-smoothing

effect of maximum likelihood training (because EBMs will explicitly decrease the

density outside the support of the data distribution).
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– Cons: expensive update due to MCMC sampling; slow sampling speed; cannot be

easily scaled up to high dimensional data.

• Denoising Diffusion Models:

– Pros: excellent sample quality; good likelihood estimate; stable training (the loss

is essentially a L2 regression).

– Cons: extremely slow sampling speed.

• Generative Adversarial Nets:

– Pros: excellent sample quality; fast sampling (1 network evaluation).

– Cons: training instability; suffered from mode collapse; no likelihood estimation.

The goal of designing deep generative models by combining two existing models is to enjoy

the best of both worlds: we hope to obtain a generative model that keeps the advantages

while removing the disadvantages of both of its components. We call such a composition

symbiotic composition. In ecology, symbiosis means the biological interaction between two

different biological organisms, and the interaction must be beneficial to both species. We

name our core idea with this term to emphasize that our proposed compositions can benefit

both sides. The resulting models improve the generative performance and, more importantly,

overcome some of the fundamental limitations of deep generative models.

In the following chapters, we will comprehensively introduce several of our proposed deep

generative models designed with symbiotic composition.
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CHAPTER 3

GENERATIVE LATENT FLOW: TOWARDS FLEXIBLE

PRIOR DISTRIBUTIONS IN LATENT SPACE

In this chapter, we discuss Generative Latent Flow, a model we proposed that aims to im-

prove the sample quality of auto-encoder based models by modeling the latent space with

a flow-based prior distribution. We will begin with motivating our approach and intro-

ducing related work. Then we will give a detailed description of our method and present

experimental results.

The material of this chapter is based on Xiao et al. [2019].

3.1 Motivation and Introduction

Auto-encoder is one of the earliest deep learning models for unsupervised learning. An auto-

encoder consists of a pair of neural networks: an encoder that learns how to compress the

input data into a low-dimensional representation and a decoder that learns how to reconstruct

the data from the encoded representation to be as close to the original input as possible.

Originally, the compressed expression obtained from the encoder was applied to downstream

tasks such as classification. In their original form, auto-encoders were not generative models,

as they only compress and reconstruct input data, while it is not clear how they can generate

new samples. The idea of generative auto-encoders is to train an encoder-decoder pair with

reconstruction loss and utilize the obtained decoder to generate new samples. Such an idea

requires that we can sample from the (empirical) marginal distributions of the compressed

representations from the encoder. This is because the representations associated with real

data may only occupy a small portion of the high-dimensional latent space, and they may be

distributed with a specific shape, and only drawing samples accordingly can produce realistic

decoded samples.
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One method to design generative auto-encoders is to force the distribution of the com-

pressed representations of the training data to follow a simple distribution that can be easily

sampled from. Doing so requires regularizing the encoder. For example, Variational Auto-

encoders introduced in Section 2.1 follow this approach with a probabilistic encoder so that

the compressed representation is a sample from the posterior distribution. VAEs encourage

the posterior distribution to be close to a noise distribution (called prior) by minimizing a KL

divergence term between them, and it can be shown that such a loss term will equivalently

enforce the marginal distributions of the representations to be close to the prior. Some other

models with this approach will be discussed in Section 3.2. Forcing the latent representations

to follow a noise distribution has several disadvantages. Firstly, doing so will introduce an

undesirable trade-off in the reconstruction quality. If the constraint on the latent distribu-

tion is stronger, the reconstruction quality (and subsequently the generation quality) will

be worse. Secondly, it is observed that even if the latent distribution is constrained to be

close to some prior, typically, there is still a significant mismatch between them. In VAEs,

there are regions in the latent space that have a high density under the prior but have a

low density under the marginal distribution of latent variables (also called the aggregated

posterior).

Due to the limitations of regularizing the encoded latent distribution to match the prior

distribution, an alternative approach to design generative auto-encoders is proposed to fit the

latent distribution with a parameterized generative model. In this approach, data samples

can be generated by drawing latent samples from the parameterized latent distribution and

decoded with the decoder. The latent generative model can be learned jointly with the

reconstruction objective or separately after the auto-encoder is trained. Some models that

follow this approach will be discussed in Section 3.2. The parameterized latent distribution

approach has several advantages. Firstly, it allows arbitrarily complex distribution of the

latent variables, which enables the auto-encoder to reconstruct data faithfully without being
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constrained. Secondly, due to the low dimension of latent variables, the generative model on

the latent space can be easy to train.

We study the approach of a parameterized latent distribution, and in particular, we

parameterize the latent distribution with normalizing flows. As a starting point, we replace

the simple prior distribution of VAEs with normalizing flows and train the auto-encoder and

the normalizing flow prior jointly with the VAEs’ objective. We carefully study this method

and make the surprising novel observation that in order to produce high-quality samples, it

is necessary to increase the weight of the reconstruction loss significantly. This corresponds

to decreasing the variance of the observational noise of the generative model at each pixel,

where we are assuming the data distribution is factorial Gaussian conditioned on the output

of the decoder, which yields the MSE as the reconstruction loss. It is important to note that

increasing this weight alone without access to a trainable prior does not consistently improve

generation quality. We show that as this weight increases, we approach a vanishing noise

limit that corresponds to a deterministic auto-encoder. This leads to a new algorithm we

call Generative Latent Flow (GLF), which combines a deterministic auto-encoder that learns

a mapping to and from a latent space and a normalizing flow that matches the standard

Gaussian to the distribution of latent variables of the training data produced by the encoder.

Our study in this chapter makes several contributions:

• We carefully study the effects of equipping VAEs with a normalizing flow prior on

image generation quality as the weight of the reconstruction loss is increased.

• ii) Based on this finding, we introduce Generative Latent Flow, which uses auto-

encoders instead of VAEs.

• Through standard evaluations, we show that our proposed model achieves state-of-

the-art sample quality among competing AE based models, and has the additional

advantage of faster convergence
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3.2 Related Work

In general, in order for an AE based model with an encoder-decoder structure to generate

new samples resembling the training data distribution, two criteria need to be ensured: (a)

the decoder is able to produce a good reconstruction of a training image given its encoded

latent variable z, and (b) the empirical latent distribution q(z) of z’s returned by the en-

coder is close to the prior p(z). In VAEs, the empirical latent distribution is often called

aggregated or marginal posterior: q(z) = Ex∼pdata [q(z|x)]. While (a) is mainly driven by

the reconstruction loss, satisfying criterion (b) is more complicated. Intuitively, criterion (b)

can possibly be achieved by designing mechanisms that either modify the empirical latent

distribution q(z), or conversely modify the prior p(z). There is plenty of previous work in

both directions.

Modifying the empirical latent distribution q(z): In the classic VAE model,

DKL[q(z|x)∥p(z)) in the ELBO loss can be decomposed as DKL[q(z)∥p(z)) plus a mutual

information term as shown in Hoffman and Johnson [2016]. Therefore, VAEs modify the

marginal distribution of latent variables q(z) indirectly through regularizing the variational

posterior distribution q(z|x). Several modifications to VAE’s loss [Chen et al., 2018b, Kim

and Mnih, 2018], which are designed for the task of unsupervised latent disentanglement, put

a stronger penalty specifically on the mismatch between q(z) and p(z), where p(z) is prede-

termined (e.g., i.i.d Gaussian). There are also attempts to incorporate normalizing flows into

the encoder to provide more flexible approximate posteriors [Rezende and Mohamed, 2015,

Kingma et al., 2016]. However, empirical evaluation shows that VAEs with flow posteriors

do not reduce the mismatch between q(z) and p(z) [Rosca et al., 2018]. Furthermore, as of

yet, all these modifications to VAEs have not been shown to improve generation quality.

Adversarial auto-encoders (AAEs) [Makhzani et al., 2015] and Wasserstein auto-encoders

(WAEs) [Tolstikhin et al., 2017] use an adversarial regularizer or maximum mean discrepancy

(MMD) regularizer to force q(z) to be close to p(z). In AAE, in addition to the auto-encoder
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which is trained by the reconstruction objective, there is an additional latent discriminator

that tries to distinguish between samples from the prior p(x) and samples from the encoder,

with an adversarial objective. Note that compared to GANs, AAEs move the adversary

from the input (pixel) space to the latent space, where p(z) may have a nice shape with a

single mode (for a Gaussian prior), in which case the task should be easier than matching an

unknown, complex, and possibly multi-modal distributions as usually done in GANs. WAEs

propose to minimize the MMD between samples from p(x) and q(z), which has an unbiased

U-statistic estimator that can be optimized with gradient descent. AAEs and WAEs are

shown to improve generation quality, as they generate sharper images than VAEs do.

Modifying the prior distribution p(z): An alternative to modifying q(z) is adopting

a trainable prior. VampPrior [Tomczak and Welling, 2018] uses a mixture of encoders to

represent the prior. However, this requires storing training data or pseudo-data to generate

samples at test time. Methods involving the same idea of approximating q(z) using a sampled

mixture of posteriors during training include [Bauer and Mnih, 2018, Klushyn et al., 2019].

This is a natural way to let the prior match q(z). However, these methods have not been

shown to improve generation quality. Takahashi et al. [2019] use the likelihood ratio estimator

to train a prior distribution. However, at test time, the aggregate posterior is used for

sampling in the latent space.

A large number of previous or concurrent work can be categorized as two-stage ap-

proaches, where an auto-encoder (or VAE) is trained first, and then a generative model on

the latent space is trained with the fixed encoder. Two-stage VAE [Dai and Wipf, 2019] in-

troduces another VAE on the latent space defined by the first VAE to learn the distribution

of latent variables. VQ-VAE and its follow-up models [Van Den Oord et al., 2017, Razavi

et al., 2019, Esser et al., 2021b] first train a vector-quantized auto-encoder with discrete

latent variables and then fits an auto-regressive prior to the latent space. GLANN [Hoshen

et al., 2019] learns a latent representation by GLO [Bojanowski et al., 2017] and matches
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the densities of the latent variables with an implicit maximum likelihood estimator [Li and

Malik, 2018]. RAE+GMM [Ghosh et al., 2019] trains a regularized auto-encoder (which is

an auto-encoder with a constraint on the L2 norm of latent variables) and fits a mixture

of Gaussian distribution on the latent space. NCP-VAE [Aneja et al., 2021] propose an

energy-based prior defined by the product of a base prior distribution and a re-weighting

factor, designed to bring the base closer to the aggregate posterior. The re-weighting factor

is trained by noise contrastive estimation. All these methods have been shown to improve

the quality of the generated images.

VAE with normalizing flows: We note that modifications of VAEs with a normalizing

flow posterior have been extensively studied. In contrast, VAEs with flow prior have attracted

much less attention. [Huang et al., 2017] briefly discusses this model to solve the distribution

mismatch in the latent space, and recently [Xu et al., 2019] shows the advantages of learning

a flow prior over learning a flow posterior. However, these papers only focus on improvements

in the data likelihood.

3.3 Combining Normalizing Flows with AE-based Models

In this section, we discuss the combination of normalizing flow priors with auto-encoder

based models in detail. We first introduce VAEs with normalizing flow prior and present

some novel observations with respect to this model. Later we propose Generative Latent

Flow (GLF) to further simplify the model and improve performance.

3.3.1 VAEs with Normalizing Flow Prior

We can easily replace the simple prior distribution in the original setting of VAEs with a

learnable prior parameterized by deep networks. In particular, when we use a normalizing

flow as the prior distribution, the training objective (ELBO) can be explicitly obtained due

to the fact that we can tractably compute the marginal density of a normalizing flow model.
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To derive the ELBO with a normalizing prior, we start by writing the ELBO with a general

prior pη(x) with parameter η:

Lθ,ϕ,η(x) = Ez∼qϕ(z|x)[log pθ(x|z)] −DKL(qϕ(z|x)∥pη(z))

= Ez∼qϕ(z|x)
[
log pϕ(x|z) + log pη(z) − log qϕ(z|x)

]
.

(3.1)

The first term is related to the reconstruction loss, while the last two terms can be combined

as DKL[qϕ(z|x)∥pη(z)).

We can also introduce an extra hyper-parameter β > 0 for future reference. β controls the

relative weight of the reconstruction loss and the KL divergence loss, and write the objective

as

Lθ,ϕ,η,β(x) = Ez∼qϕ(z|x)
[
β · log pϕ(x|z) + log pη(z) − log qϕ(z|x)

]
. (3.2)

Note that β = 1 corresponds to the original ELBO. When β ̸= 1, the expression may not

be a valid lower bound for the log likelihood, but it is still frequently used to train VAEs

[Higgins et al., 2016]. In the standard formulation of VAEs, the generative model pθ assumes

an independent Gaussian distribution with variance 1 at each pixel. The parameter β allows

us to adjust this variance as 1/β.

If we introduce a normalizing flow fη for the prior distribution, then the prior pη becomes

pη(z) = p0(fη(z))

∣∣∣∣det

(
∂fη(z)

∂z

)∣∣∣∣ , (3.3)

where p0 is the standard Gaussian density. Substituting this prior into Equation 3.2, we
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obtain Lθ,ϕ,η for VAEs with flow prior:

Lθ,ϕ,η,β(x) = Eqϕ(z|x)

[
β · log pθ(x|z) + log p0

(
fη(z)

)
+ log

∣∣∣∣det

(
∂fη(z)

∂z

)∣∣∣∣− log qϕ(z|x)

]
.

(3.4)

The second and third terms together are the log-likelihood of z under the prior distribution

modeled by the flow. The last term corresponds to the entropy of the posterior distribution

returned by the encoder. Both the VAE and the normalizing flow are trained by maximizing

Lθ,ϕ,η,β over all training samples.

Previous work on VAEs with a flow prior did not consider tuning β (which means the

reconstruction loss and the KL loss are weighted equally) as they focused on comparing the

obtained log likelihoods with those from plain VAEs. However, we observe that when β = 1,

VAEs with a flow prior do not significantly improve the generation quality. The reason might

be that although pη(z) is matched with qϕ(z) due to the flow transformation, the decoder is

not good enough to reconstruct sharp images (i.e, criterion (a) in Section 3.2 is not ensured).

In contrast, we find that increasing β in the objective produces samples with significantly

higher quality. Intuitively, a larger weight on the reconstruction loss forces the decoder to

produce sharper reconstructed images, while the normalizing flow prior is flexible enough to

match the latent distribution.

To the best of our knowledge, we are the first to observe such a relation between the

weight of the reconstruction loss and the generation quality of VAEs with flow prior. As β

increases, two things occur, as demonstrated empirically in Section 3.4. First, the estimated

variances from the encoder decrease, and second the generation quality consistently improves.

In the limit, as the posterior variance goes to zero, we obtain a deterministic encoder, leading

to a deterministic auto-encoder and a normalizing flow that is used to match the distribution

of the latent variables obtained from the data.
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3.3.2 Generative Latent Flow

We consider the objective of VAEs with a flow prior in Equation 3.2 when VAE is replaced by

an auto-encoder. In an auto-encoder, denoting Eϕ as the encoder, z = Eϕ(x) is deterministic

so that qϕ(z|x) in Equation 3.2 becomes a delta distribution and the entropy term can be

removed. The overall training objective is then minimizing

Lreg
θ,ϕ,η,β(x) = β · Lrecon

(
x, Gθ

(
Eϕ (x)

))
+ LNLL

(
fη
(
Eϕ (x)

))
, (3.5)

where Gθ is the decoder, the reconstruction loss Lrecon
(
x, Gθ

(
Eϕ (x)

))
corresponds to the

negative log likelihood of the generative model − log pθ(x|z), and the prior negative log

likelihood term LNLL
(
fη
(
Eϕ (x)

))
corresponds to − log pη(z), which is the negative of the

second and the third term of Equation 3.2:

− log pη(z) = − log p0(fη(z)) − log

∣∣∣∣det

(
∂fη(z)

∂z

)∣∣∣∣ . (3.6)

As noted before, larger β’s yield better reconstruction results, in which case the parameters

of the auto-encoder are affected almost exclusively by Lrecon, while LNLL only affects the

parameters θ of the normalizing flow. Therefore, optimizing Equation 3.6 with extremely

large β is approximately equivalent to optimizing

LGLF
θ,ϕ,η,β(x) = β · Lrecon

(
x, Gθ

(
Eϕ (x)

))
+ LNLL

(
fη
(
sg
[
Eϕ (x)

]))
, (3.7)

where sg[·] is the stop gradient operation. The weight parameter β is no longer needed

because the two loss terms affect independent sets of parameters. We name the model

trained by Equation 3.7 as Generative Latent Flow (GLF), to highlight that our model

applies normalizing flows on latent variables. We call the model trained by Equation 3.2,

without stopped gradient, regularized GLF, since the flow acts as a regularizer on the
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Figure 3.1: Illustration of the GLF model. The red arrow contains a stop gradient operation.

encoder. See Figure 3.1 for an illustration of the GLF model.

Necessity of stopping the gradients: The stop gradient operation is necessary when

using deterministic auto-encoders. In VAEs with flow prior, the entropy term, which encour-

ages the posterior to have large variance, prevents the degeneracy of the z’s. However, when

using a deterministic encoder, if we let gradients of LNLL backpropagate into the latent vari-

ables, training can lead to degenerate z’s produced by the encoder Eϕ. This is because fη

has to transform the z’s to unit Gaussian noise, so the smaller the scale of the z’s, the larger

the magnitude of the log-determinant of the Jacobian. Since there is no constraint on the

scale of the output of Eϕ, the Jacobian term can dominate the entire objective. While the

latent variables cannot become exactly 0 because of the presence of the reconstruction loss,

the extremely small scale of z may cause numerical issues that lead to severe fluctuations. In

summary, we stop the gradient of LNLL at the latent variables, preventing it from modifying

the values of z and affecting the parameters of the encoder. We demonstrate the issues with

regularized GLF in Section 3.4.
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3.4 Experimental Results

To demonstrate the performance of our proposed method, we present both quantitative

and qualitative evaluations on four commonly used datasets for generative models: MNIST

[Lecun, 2010], Fashion MNIST [Xiao et al., 2017], CIFAR-10 [Krizhevsky et al., 2009] and

CelebA [Liu et al., 2015]. Throughout the experiments, we use 20-dimensional latent vari-

ables for MNIST and Fashion MNIST, and 64-dimensional latent variables for CIFAR-10

and CelebA.

Lucic et al. [2018] adopted a common network architecture based on InfoGAN [Chen et al.,

2016] to evaluate GANs. In order to make fair comparisons without designing arbitrarily

large networks to achieve better performance, we use the generator architecture of InfoGAN

as our decoder’s architecture, and the encoder is set symmetric to the decoder. For the flow

applied to the latent variables, we use four affine coupling blocks, where each block contains

three fully connected layers, each with k hidden units. For MNIST and Fashion MNIST,

k = 64, while for CIFAR-10 and CelebA, k = 256. Note that the flow only adds a small

parameter overhead on the auto-encoder (less than 3%).

We use the FID score [Heusel et al., 2017] introduced in Section 1.2.4 to evaluate the

sample quality. In addition, we use the precision and recall metric [Sajjadi et al., 2018],

which can assess both the quality and diversity of generated samples.

We present our main results in Section 3.4.1, where we include both quantitative and

qualitative results of our model. In Section 3.4.2, we carefully study several closely correlated

methods, including VAEs with flow prior, GLF, and regularized GLF. In Section 3.4.3, we

present the experimental settings for reproduction purposes.

3.4.1 Main Results

Table 3.1 summarizes the main results of this work. We compare the FID scores obtained

by GLF with the scores of the VAE baseline and several existing AE based models that are
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(a) MNIST (b) FMNIST (c) CIFAR-10

(d) CelebA
(e) CelebA-HQ

Figure 3.2: Randomly generated samples from our method trained on different datasets.

claimed to produce high quality samples. Instead of directly citing their reported results, we

re-ran the experiments because we want to evaluate them under standardized settings so that

all models adopt the same AE architectures, latent dimensions, and image pre-processing.

We report the results of VAE+flow prior/posterior with β = 1. For other methods, we

largely follow their proposed experimental settings. Details of each experiment are presented

in Section 3.4.3.

Note that the authors of WAE propose two variants, namely WAE-GAN and WAE-

MMD. We only report the results of WAE-GAN, as we found it consistently outperforms

WAE-MMD. Note also that GLANN [Hoshen et al., 2019] obtains impressive FID scores,

but it uses perceptual loss [Johnson et al., 2016] as the reconstruction loss, while other
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Table 3.1: FID scores obtained from different AE-based generative models. For our reported
results, we executed 10 independent trials and report the mean and standard deviation of
the FID scores. Each trail is computing the FID between 10k generated images and 10k real
images.

MNIST Fashion CIFAR-10 CelebA

VAE 28.2 ± 0.3 57.5 ± 0.4 142.5 ± 0.6 71.0 ± 0.5
WAE-GAN 12.4 ± 0.2 31.5 ± 0.4 93.1 ± 0.5 66.5 ± 0.7
Two-Stage VAE 10.9 ± 0.7 26.1 ± 0.9 96.1 ± 0.9 65.2 ± 0.8
RAE + GMM 10.8 ± 0.1 25.1 ± 0.2 91.6 ± 0.6 57.8 ± 0.4
VAE+flow prior 28.3 ± 0.2 51.8 ± 0.3 110.4 ± 0.5 54.3 ± 0.3
VAE+flow posterior 26.7 ± 0.3 55.1 ± 0.3 143.6 ± 0.8 67.9 ± 0.3
GLF (ours) 8.2 ± 0.1 21.3 ± 0.2 88.3 ± 0.4 53.2 ± 0.2

GLANN with perceptual loss 8.6 ± 0.1 13.0 ± 0.1 46.5 ± 0.2 46.3 ± 0.1
GLF+perceptual loss (ours) 5.8 ± 0.1 10.3 ± 0.1 44.6 ± 0.3 41.8 ± 0.2

models use MSE loss. The perceptual loss is obtained by feeding both training images and

reconstructed images into a pre-trained network such as the VGG network and computing

the L1 distance between some of the intermediate layers’ activation. We also train our

method with perceptual loss and compare it with GLANN in the last two rows of Table 3.1.

As shown in Table 3.1, our method obtains significantly lower FID scores than competing

AE based models across all four datasets. In particular, GLF greatly outperforms VAE+flow

prior with the default setting of β = 1. We also confirm that VAE+flow posterior cannot

improve generation quality. Perhaps the competing model with the closest performance to

ours is RAE+GMM, which shares some similarities with GLF in that both methods fit the

density of the latent variables of an AE explicitly.

To compare our method with GANs, we also include the results from [Lucic et al., 2018]

in Table 3.2. In [Lucic et al., 2018], the authors conduct standardized and comprehensive

evaluations of representative GAN models with large-scale hyper-parameter searches, and

therefore, their results can serve as a strong baseline. The results indicate that our method’s

generation quality is competitive with that of carefully tuned GANs.

In Table 3.3, we present the Precision and Recall scores of our method and several

92



Table 3.2: FID score comparisons of GANs and GLF

MNIST Fashion CIFAR-10 CelebA

MM GAN 9.8 ± 0.9 29.6 ± 1.6 72.7 ± 3.6 65.6 ± 4.2
NS GAN 6.8 ± 0.5 26.5 ± 1.6 58.5 ± 1.9 55.0 ± 3.3
LSGAN 7.8 ± 0.6 30.7 ± 2.2 87.1 ± 47.5 53.9 ± 2.8
WGAN 6.7 ± 0.4 21.5 ± 1.6 55.2 ± 2.3 41.3 ± 2.0
WGAN GP 20.3 ± 5.0 24.5 ± 2.1 55.8 ± 0.9 30.3 ± 1.0
DRAGAN 7.6 ± 0.4 27.7 ± 1.2 69.8 ± 2.0 42.3 ± 3.0
BEGAN 13.1 ± 1.0 22.9 ± 0.9 71.4 ± 1.6 38.9 ± 0.9

GLF (ours) 8.2 ± 0.1 21.3 ± 0.2 88.3 ± 0.4 53.2 ± 0.2
GLF+perceptual loss (ours) 5.8 ± 0.1 10.3 ± 0.1 44.6 ± 0.3 41.8 ± 0.2

Table 3.3: Evaluation of sample quality by precision/recall.

MNIST Fashion CIFAR-10 CelebA

WAE-GAN (0.98, 0.96) (0.90, 0.83) (0.41, 0.72) (0.50, 0.51)
Two-stage VAE (0.98, 0.97) (0.94, 0.84) (0.38, 0.66) (0.45, 0.55)
RAE+GMM (0.99, 0.97) (0.92, 0.92) (0.37, 0.73) (0.33, 0.44)
GLF (ours) (0.98, 0.98) (0.932, 0.92) (0.48, 0.76) (0.54, 0.61)

GLANN+perceptual loss (0.97, 0.98) (0.985, 0.963) (0.860, 0.825) (0.574, 0.681)
GLF+perceptual loss (ours) (0.99, 0.99) (0.99, 0.98) (0.76, 0.85) (0.76, 0.78)

competing methods. The two numbers in each entry are F8, F1
8

that capture recall and

precision, respectively. See [Sajjadi et al., 2018] for more details. Higher numbers are

better. As shown in the table, GLF obtains state-of-the-art Precision and Recall scores

across all datasets, indicating that our method outperforms competing methods in terms of

both sample quality and diversity.

Some qualitative results are shown in Figure 3.2. Besides samples of the datasets used

for quantitative evaluation, samples of CelebA-HQ [Karras et al., 2017] with the larger size

of 256×256 are also included to show our method’s ability to scale up to images with higher

resolution. Qualitative results show that our model can generate sharp and diverse samples

in each dataset. In Figure 3.3, we show CelebA images generated by linearly interpolating

two sampled random noise vectors. The smooth and natural transition shows that our model
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Figure 3.3: Random noise interpolation in the noise space of GLF on CelebA dataset

can generate samples that have not been seen during training. To provide further evidence

that our model does not overfit or ‘memorize’ the training set, we show the nearest neighbors

in training set for some generated samples in Figure 3.4.

We also observe that samples from models trained with perceptual loss have higher

quality. We present samples from models trained with perceptual loss in Figure 3.5.

Training time: Besides better performance, our method also has the advantage of faster

convergence among competing methods such as GLANN and Two-stage VAE. In Table 3.4,

we compare the number of training epochs to obtain the FID scores in Table 3.1. We

also compare the per epoch training clock time in Table 3.5. Note that for methods using

perceptual loss, the per epoch training time is longer because VGG activations need to be

computed. These two tables show that GLF needs much shorter training time than the

two competing methods. In GLF, training the flow does not add much computational time

due to the low dimensionality. The combined results indicate that GLF requires much less

training time while generating samples with higher quality.
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(a) MNIST (b) CelebA

Figure 3.4: Some randomly generated samples are presented in the leftmost column in
each picture. The other 5 columns of each picture show the top 5 nearest neighbors of the
corresponding sample in the training set.

Table 3.4: Number of training epochs for Two-stage VAE, GLANN, and GLF

MNIST/Fashion CIFAR-10 CelebA

Two-stage VAE First/Second 400/800 1000/2000 120/300
GLANN First/Second 500/50 500/50 500/50
GLF 100 200 40

3.4.2 Comparisons: GLF vs. Regularized GLF and VAE+flow Prior

As discussed in Section 3.3, we underline the novel finding regarding the relationship between

the weight on the reconstruction loss and the sample quality of VAEs with flow prior. In

this section, we present detailed experiments on this relation. We train VAEs+flow prior

on CIFAR-10 for different choices of β, plus one with a learnable β [Dai and Wipf, 2019].

We record the progression of FID scores of these models in Figure 3.6 (a). In Figure Figure

3.6 (b), we plot the entropy term, which is the last term in Equation 3.4, the objective of

VAE+flow prior. The entropy is expressed as −
∑d
j=1 log(σj)/2, where σj is the standard
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(a) MNIST (b) FMNIST

(c) CIFAR-10 (d) CelebA

Figure 3.5: Randomly generated samples from our method with perceptual loss.

deviation of the approximate posterior on the jth latent variable. Higher entropy means that

the latent variables have lower variances. In Figure 3.6(c), we plot the NLL loss. We omit

the results for β = 1 because the obtained FID scores are too high to fit the scale of the

plot. Settings for the experiments in this subsection can be found in Section 3.4.3.

From Figure 3.6 (a), we clearly observe the trend that the generation quality measured

by FID scores improves as β increases. We also observe that as β increases, the performance

gap between VAE+flow prior and GLF closes, indicating that GLF captures the limiting

behavior of VAE+flow prior. We also find that learnable β is not effective, probably due to

the relatively small values of β at the early stages of training. When β is large, as indicated by

Figure 3.6 (b), the posterior variances of VAEs become very small, so that effectively we are

training an AE. For example, as shown in Figure 3.6 (b), when β = 400, the corresponding

average posterior variance is around 10−4. This motivates us to use a deterministic auto-
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Table 3.5: Per-epoch training time in seconds

MNIST/Fashion CIFAR-10 CelebA

2-stage VAE 1st/2nd 5/2 6/2 60/28
GLF 10 13 108
GLANN with perceptual loss 14 16 292
GLF with perceptual loss 16 19 343

Figure 3.6: (a) Record of FID scores on CIFAR-10 for VAEs+flow prior with different values
of β and GLF. (b) Record of entropy losses for corresponding models. (c) Record of NLL
losses for corresponding models.

encoder in GLF, which as we have said above, can be seen as the vanishing observational

variance limit of VAE+flow prior. It is important to note that the relation between β and

generation quality only exists for VAEs with a trainable prior (such as normalizing flow), as

we verify empirically that increasing β on plain VAEs leads to worse FID scores.

As discussed in Section 3.3.2, training regularized GLF is unstable because of the degen-

eracy of the latent variables driven by the NLL loss. We empirically study the effect of latent

regularization as a function of β and present results in Figure 3.7. For low values of β = 1

and 10, the NLL loss completely dominates the learning signal, and the reconstruction loss

quickly diverges. Therefore we omit them in the plot. For larger values of β = 50, 100, 400

we observe that the NLL loss decreases to a negative value of a very large magnitude, and

although overall performance is reasonable, it oscillates quite strongly as training proceeds.

In contrast, for GLF, where the flow does not modify z, the NLL loss does not degenerate,
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Figure 3.7: (a) Record of FID scores on CIFAR-10 for regularized GLF with different values
of β and GLF. β = 1 and 10 are omitted because they lead to divergence in the reconstruction
loss. (b) Record of reconstruction loss for the corresponding models. (c) Record of NLL loss
for the corresponding models.

resulting in stable improvements in FID scores as training progress.

In contrast to regularized GLF, which uses a deterministic encoder, no degeneracy in

the latent variables is observed for VAE+flow prior, thanks to the noise introduced in the

stochastic encoder and the corresponding entropy term. Indeed, Figure 3.6 (c) shows that

the training of VAE+flow prior does not over-fit the NLL loss, as opposed to regularized GLF

where severe over-fitting to NLL loss occurs, as shown in Figure 3.7 (c). Comparing Figure

3.6 (a) and 3.7 (a), we observe that unlike regularized GLF, VAE+flow prior does not suffer

from divergence or fluctuations in FID scores, even with relatively small β. In summary,

the results of FID scores show that regularized GLF is unstable, while as β increases, the

performance of VAE+flow prior converges to that of GLF. Note that although GLF only

slightly outperforms VAE+flow prior, even when β is very large, it has the advantage that

there is no need to tune β.

3.4.3 Experimental Settings

Network Architectures:

In this section we provide Table 3.6 that summarizes the auto-encoder network structure.
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Table 3.6: Network structure for auto-encoder based on InfoGAN

Encoder Decoder

Input x Input z
4 × 4 Conv64, ReLU FC nz → 1024, BN, ReLU
4 × 4 Conv128, BN, ReLU FC 1024 → 128 ×M ×M , BN, ReLU
Flatten, FC 128 ×M ×M → 1024, BN, ReLU 4 × 4 Deconv64, BN, ReLU
FC 1024 → nz 4 × 4 Deconv128, Sigmoid

The network structure is adopted from InfoGAN [Chen et al., 2016], and the difference

between the networks we used for each dataset is the size of the fully connected layers,

which depends on the size of the image. All convolution and deconvolution layers have

stride = 2 and padding = 1 to ensure the spatial dimension decreases/increases by a factor

of 2. M is simply the size of an input image divided by 4. Specifically, for MNIST and

Fashion MNIST, M = 7; for CIFAR-10, M = 8; for CelebA, M = 16. BN stands for batch

normalization.

For VAEs, the final FC layer of the encoder will have doubled output size to return both

the mean and standard deviation of latent variables.

Details of Experiments:

Here we present the details of our experimental settings for results in Table 3.1. Since

the settings for MNIST and Fashion MNIST are the same, we only mention MNIST for

simplicity. For GLANN, we directly cite the results from Hoshen et al. [2019], as their

experimental settings is very similar to ours.

We use the original images in the training sets for MNIST, Fashion MNIST and CIFAR-

10. For CelebA, we follow the same pre-processing as in Lucic et al. [2018]: center crop to

160× 160 and then resize to 64× 64. We normalize the pixel values to [0, 1], without adding

noise to pixels (i.e, no de-quantization).

Settings for training GLF: For all datasets (except CelebA-HQ), we use batch size

256 and Adam optimizer with initial learning rate 10−3 for the parameters of both the AE
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and the flow. We add a weight decay 2 × 10−5 to the optimizer for the flow. For MNIST,

we train our model for 100 epochs, with learning rate decaying by a factor of 2 after 50

epochs. For CIFAR-10, we train our model for 200 epochs, with the learning rate decaying

by a factor of 2 every 50 epochs. For CelebA, we train our model for 40 epochs with no

learning rate decay.

For GLF with perceptual loss, we compute the perceptual loss as suggested in [Hoshen

and Wolf, 2018]. See https://github.com/facebookresearch/NAM/blob/master/code/

perceptual_loss.py for their implementation. Other settings are the same.

For CelebA-HQ dataset, we adopt our AE network structure based on DCGAN [Radford

et al., 2015]. Note that this is a relatively simple network for high resolution imgaes. We

use batch size 64, with initial learning rate 10−3 for both the AE and the flow. We train our

model for 60 epochs, with learning rate decaying by a factor of 2 after 40 epochs.

Settings for training VAEs and VAE variants: We adopt common settings for

our reported results of VAE, VAE+flow prior and VAE+flow posterior. We use β = 1 for all

three VAE variants. We still use batch size 256, and Adam optimizer with initial learning

rate 10−3 for both the VAE and the flow, if applicable. We find VAEs need longer time to

converge, so we double the training epochs. We train MNIST for 200 epochs, with learning

rate decaying by a factor of 2 after 100 epochs. We train CIFAR-10 for 400 epochs, with

the learning rate decaying by a factor of 2 every 100 epochs. We train CelebA for 80 epochs

with learning rate decaying by a factor of 2 after 40 epochs.

Settings for training two stage VAE: We adopt the settings in the original paper

[Dai and Wipf, 2019]. For all datasets, the batch size is set to be 64, and the initial learning

rate for both the first and the second is 10−4. For MNIST, the first VAE is trained for

400 epochs, with learning rate halved every 150 epochs; the second VAE is trained for 800

epochs with learning rate halved every 300 epochs. For CIFAR-10, 1000 and 2000 epochs

are trained for the two VAEs respectively, and the learning rates are halved every 300 and
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600 epochs for the two stages. For CelebA, 120 and 300 epochs are trained for the two VAEs

respectively, and the learning rates are halved every 48 and 120 epochs for the two stages.

3.4.4 Settings for training RAE+GMM

The settings of batch size, learning rate scheduling and number of epochs for training RAE

are the same as those of GLF. The objective of the RAE is reconstruction loss plus a penalty

on the norm of the latent variable. Since the author does not report their choices for the

penalty coefficient γ, we search over γ ∈ 0.1, 0.5, 1, 2, and we find that β = 0.5 leads to the

best overall performances, and therefore we let γ = 0.5. After training the RAE, we fit a

10-component Gaussian mixture distribution on the latent variables.

Settings for Experiments in Section 3.4.2: For all experiments in Section 3.4.2, we

use batch size 256 and initial learning rate 10−3 for both AE and flow. We train all models

for 500 epochs with learning rates decaying by a factor of 2 every 150 epochs.

3.5 Conclusion

In this chapter, we introduce Generative Latent Flow, a novel generative model which uses

an auto-encoder to learn a latent space from training data and a normalizing flow to match

the distribution of the latent variables with the prior. Under standardized evaluations,

our model achieves state-of-the-art results in image generation quality and diversity among

several recently proposed auto-encoder based models. While we are not claiming that our

GLF model is superior to GANs, we do believe that it opens the door to realizing the potential

of AE based models to produce high-quality samples just as GANs do. Our proposed model

is motivated by our novel finding on the relation between large reconstruction weight and

generation quality of VAEs with normalizing flow prior. The finding itself is crucial, as it can

potentially motivate future work to study the trade-off between reconstruction and density

matching in the objective of VAEs with learnable priors.
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The GLF model can be seen as a symbiotic composition of auto-encoder and normalizing

flows. Specifically, on the one hand, the auto-encoder provides a latent space that is low

dimensional and unstructured, which makes the training of normalizing flows significantly

easier than training directly on data space. On the other hand, the normalizing flow accu-

rately models the distribution of latent variables, providing a powerful prior that is easy to

sample from and allowing the auto-encoder to use its full potential to reconstruct data.
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CHAPTER 4

EXPONENTIAL TILTING OF GENERATOR MODELS WITH

ENERGY-BASED MODELS

This chapter introduces the idea of exponential tilting of a base generative model with an

energy-based model. The EBM can refine the distribution modeled by the base generative

model and improve the sample quality. We will begin with motivating our approach and

introducing related work. Then we will give a detailed description of our method, includ-

ing the cases when the base generative model is a normalizing flow or VAE, and present

experimental results.

The material of this chapter is based on Xiao et al. [2020a] and Xiao et al. [2021a].

4.1 Motivation and Introduction

In Chapter 2, we mentioned that likelihood-based deep generative models, which are usually

trained by maximum likelihood, enjoy the benefits that their training is stable and they

cover modes in data more faithfully by construction. The reason is that maximum likelihood

corresponds to minimizing the forward KL divergence:

min
θ
DKL(pdata(x)∥pθ(x)) =

∫
pdata(x) log

pdata(x)

pθ(x)
dx. (4.1)

From this objective, we see that training will be heavily penalized if pθ(x) = 0 at where

pdata(x) ̸= 0. In other words, the objective will enforce the model pθ(x) to spread out over

all the support of pdata(x), resulting in good mode coverage. However, the same objective

may cause a major disadvantage of likelihood-based generative models: they tend to assign

a high probability to regions with low density under the data distribution. The reason is

that the real data distribution is very complicated, while parameterized models have limited

capacity even when parameterized by a deep neural network, and enforcing a relatively
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Figure 4.1: illustration of such a density mismatch between true data distribution and a
parametrized VAE model. Red crosses are training data.

Figure 4.2: Samples from NVAE, one of the strongest VAE models, trained on CelebA-HQ
dataset. Although the overall shape of human faces is good, we observe undesirable artifacts
especially on the boundary of faces.

simple distribution to cover all the support of a complex distribution will result in severe

density mismatch. This mismatch often results in blurry or corrupted samples generated by

likelihood-based models. It also explains why likelihood-based generative models often fail

at out-of-distribution detection [Nalisnick et al., 2018]. Figure 4.1 gives an illustration of

such a density mismatch for a VAE model, where we see that although the VAE roughly

captures the shape of the real data distribution, the first mode of the modeled distribution

actually belongs to a low-density region of the true data distribution. As a result, even the

state-of-the-art VAE models [Vahdat and Kautz, 2020] cannot generate good samples (see

Figure 4.2). Similar observations are made on other likelihood-based generative models, such

as normalizing flows.

Among likelihood-based models, EBMs model the unnormalized data density by assign-

ing low energy to high-probability regions in the data space [Xie et al., 2016, Du and Mor-

datch, 2019]. EBMs are appealing because they require almost no restrictions on network
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architectures (unlike normalizing flows) and are therefore potentially very expressive. They

also suffer less from the issue of assigning high likelihood to non-data-like regions compared

to other likelihood-based generative models, as they exhibit sharper sample quality and

out-of-distribution generalization [Du and Mordatch, 2019]. The reason is that, during the

maximum likelihood training of EBMs, areas with high probability under the model but low

probability under the data distribution are penalized explicitly, as discussed in Section 2.3.

However, training and sampling EBMs usually requires MCMC, which can suffer from slow

mode mixing and is computationally expensive when neural networks represent the energy

function. In particular, gradient-based MCMC sampling in the data space generally does not

mix. The data distribution is typically highly multi-modal, and to approximate such a dis-

tribution, the energy function needs to be highly multi-modal as well. When sampling from

such a multi-modal density in the data space, gradient-based MCMC tends to get trapped in

local modes with little chance to traverse the modes freely. Without being able to generate

fair examples from the model, the estimated gradient of the maximum likelihood learning

can be very biased. As a result, previous EBM models only obtained limited success, even

on small images.

The difficulty of MCMC sampling can possibly be resolved by mapping the data into a

latent space and running MCMC in the latent space. For example, Hoffman et al. [2019]

observe that it is much more efficient to run an MCMC sampler in the latent space trans-

formed by a normalizing flow. Both VAE and normalizing flow models naturally come with a

latent embedding of data that has a single mode and has smooth geometry. The embedding

allows fast traversal of the data manifold by moving in the latent space and mapping the

movements to the data space.

The above arguments suggest a possible composition of VAEs or normalizing flows with

EBMs. The resulting model defines the generative distribution as the product of a base

generative model, which is either a VAE or normalizing flow, and an EBM component
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Figure 4.3: High level illustration of the idea of exponential tilting with a VAE as the base
generative model.

defined in pixel space in the form of a correction, or an exponential tilting, of the base

model. Intuitively, the base model captures the majority of the mode structure in the data

distribution. However, it may still generate samples from low-probability regions in the data

space. Thus, the energy function focuses on refining the details and reducing the likelihood

of non-data-like regions. This is because in the negative training phase of EBMs, we sample

from the model itself and obtain non-data-like samples, whose likelihood is then reduced by

the energy function explicitly. The energy function defined in the pixel space also shares

similarities with the discriminator in GANs, which can generate crisp and detailed images.

Figure 4.3 gives a high level illustration of the idea, when the base generative model is a

VAE, which leads to the VAEBM model.

Moreover, we show that training the compositional model by maximizing the data like-

lihood easily decomposes into training the base model and the EBM component separately.

The model is trained using the standard maximimum likelihood approach, while the EBM

component requires sampling from the joint energy-based model during training. We show
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that we can sidestep the difficulties of sampling from the joint model, by reparameterizing

the MCMC updates using the latent variables. This allows MCMC chains to quickly traverse

the model distribution and it speeds up mixing. As a result, we only need to run short chains

to obtain approximate samples from the model, accelerating both training and sampling at

test time.

Experimental results show that when equipped with a strong base model, our model

outperforms previous EBMs and state-of-the-art VAEs on image generation benchmarks,

including CIFAR-10, CelebA 64, LSUN Church 64, and CelebA HQ 256 by a large margin,

reducing the gap with GANs. We also show that our model faithfully covers the modes

in the data distribution while having fewer spurious modes for out-of-distribution data. In

particular, with the help of the powerful NVAE [Vahdat and Kautz, 2020], our VAEBM

model is the first successful EBM applied to large images.

In summary, this chapter makes the following contributions:

• We propose a new framework of generative models using the product of a VAE or

normalizing flow and an EBM defined in the data space.

• We show how training this model can be decomposed into training the base model

first, and then training the EBM component.

• We show how MCMC sampling from the model can be pushed to the base model’s

latent space, significantly accelerating sampling.

• We demonstrate state-of-the-art image synthesis quality among likelihood-based mod-

els, confirm complete mode coverage, and show strong out-of-distribution detection

performance.
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4.2 Related Work

Our proposed framework is based on the exponential tilting of a base generative model by

an EBM. It shares similarity with previous work that builds connections between EBMs and

other generative models. Zhao et al. [2017], Che et al. [2020], Song et al. [2020b], Arbel

et al. [2020] formulate EBMs with GANs, and use the discriminator to assign an energy. In

particular, Che et al. [2020] proposed to sample from a EBM of the form

p∗(x) =
1

Z
pg(x)eD(x), (4.2)

where pg is the implicit distribution defined by the generator G, and D is the discriminator.

The model can be seen as a exponential tilting of pg, and the sampling is done by running

MCMC in the noise space by the mapping of x = G(z). Such a high level idea is closely

related to ours.

Our work is partially inspired by neural transport sampling [Hoffman et al., 2019]. For an

unnormalized target distribution, the neural transport sampler trains a flow-based model as a

variational approximation to the target distribution, and then samples the target distribution

in the space of latent variables of the flow-based model via change of variable. In the

latent space, the target distribution is close to the prior distribution of the latent variables

of the flow-based model, which is usually a unimodal Gaussian white noise distribution.

Consequently the target distribution in the latent space is close to be unimodal and is much

more conducive to the mixing and fast convergence of MCMC than sampling in the original

space. Nijkamp et al. [2022] is a simplified special case of this idea, where they learn the EBM

as a correction of a pre-trained flow-based model, so that they do not need to train a separate

flow-based approximation to the EBM. The idea of Nijkamp et al. [2022] is exactly the same

as Xiao et al. [2020a] and they were developed concurrently. However, we motivate the idea

from the perspective of energy-based refinement rather than neural transport MCMC. The
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idea of neural transport MCMC relies on normalizing flows, because they need to compute

the tractable density to ensure valid sampling. However, due to their topology-preserving

nature, normalizing flows cannot easily transport complex multimodal data, and their sample

quality on images is limited. In Xiao et al. [2021a], we found that the exponential tilting of

VAE models leads to much improved sample quality.

A few previous works combine VAEs and EBMs in different ways from ours. Pang et al.

[2020] and Vahdat et al. [2018b,a, 2020] use EBMs for the prior distribution, and Han et al.

[2020, 2019] jointly learn a VAE and an EBM with independent sets of parameters by an

adversarial game.

Finally, as we propose two-stage training where the base model is trained first followed

by the training of the EBM, our work is related to post training of latent variable models.

Previous work in this direction learns the latent structure of pre-trained VAEs [Dai and

Wipf, 2019, Xiao et al., 2019, Ghosh et al., 2019], and sampling from learned latent distri-

butions improves sample quality. These methods cannot easily be extended to VAEs with

hierarchical latent variables, as it is difficult to fit the joint distribution of multiple groups

of variables. Our purpose in two-stage training is fundamentally different: we post-train an

energy function to refine the distribution in data space.

4.3 Formulation of Exponential Tilting with EBMs

In this section, we introduce the formulation of exponential tilting with EBMs. Recall from

Chapter 2.3 that we write the density function of an EBM in the following form:

pθ(x) =
1

Zθ
e−fθ(x), (4.3)
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where fθ is the energy function and Zθ is the normalizing constant. More generally, EBMs

can have a parameterized base distribution qϕ(x), and we can write the model as

pθ,ϕ(x) =
1

Zθ,ϕ
qϕ(x)e−fθ(x), (4.4)

which can be seen as an exponential tilting of qϕ(x). For example, in Noise Contrastive

Estimation introduced in Section 1.2.2, the base distribution qϕ(x) is the noise distribution,

and the energy function is the re-weighting factor obtained from the binary classifier.

In this chapter, we propose to exponentially tilt base generative models, and therefore

qϕ(x) will be another deep generative model such as a normalizing flow or a VAE. The

resulting model pθ,ϕ is a correction or refinement over qϕ(x).

4.3.1 Normalizing Flows as the Base Generative Model

We first discuss the case where normalizing flows are used as the base generative model.

Consider the exponential tilting model in Equation 4.4, where qϕ(x) is a normalizing flow

and fθ(x) is a free-form neural network. Note that the normalizing flow is defined by an

invertible transformation Fϕ through a change of variables. Specifically, the normalizing flow

transforms z ∼ q0z to x = Fϕ(z), and we can express the density in z-space in terms of the

density in x-space by the change-of-variable formula:

q0(z) = qϕ(x)
dx

dz
, (4.5)

where dz and dx are understood as the volumes of the infinitesimal local neighborhoods

around z and x respectively under the mapping x = Fϕ(z). We can re-write Equation 4.5 as

q0(z)dz = qϕ(x)dx. (4.6)
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We can apply the same change-of-variable to pθ,ϕ(x), and obtain a corresponding distri-

bution in the z-space. To do this, denote hθ,ϕ(z) to be the distribution of z under pθ,ϕ(x)

in z-space, we have

hθ,ϕ(z)dz = pθ,ϕ(x)dx =
1

Zθ,ϕ
qϕ(x)e−fθ(x)dx. (4.7)

Applying the change-of-variable of qϕ(x) in Equation 4.6, we obtain

hθ,ϕ(z) =
1

Zθ,ϕ
q0(z)e−fθ(Fϕ(z)). (4.8)

Therefore, we obtain an equivalent distribution in z-space, which is an exponential tilting

of the prior noise distribution q0(z). To obtain a sample from pθ,ϕ(x), we can sample from

hθ,ϕ(z) and apply the transformation Fϕ(z).

As discussed in Section 4.1, we let the normalizing flow capture the overall shape of data

distribution and use the exponential tilting technique to refine the model. Therefore, we first

pre-train the normalizing flow with maximum likelihood and then train the energy function

fθ while keeping the flow fixed. We can train pθ,ϕ(x) with fixed ϕ∗ for Fϕ by the following

gradient of log-likelihood:

∇θLθ = Ex∼pdata(x)

[
∂fθ(x)

∂θ

]
− Ex′∼pθ,ϕ∗(x′)

[
∂fθ

(
x′
)

∂θ

]
, (4.9)

where samples from pθ,ϕ∗ can be drawn by transforming samples from hθ,ϕ(z) with Fϕ∗ , as

discussed above. We can draw samples from hθ,ϕ∗(z) by running the following Langevin

dynamics

zk+1 = zk −
ϵ

2
∇z
(
fθ
(
Fϕ∗(z)

)
− log p0(z)

)
+
√
ϵω, ω ∼ N (0, I). (4.10)

It is tempting to apply the above exponential tilting formulation to generator models,
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such as VAEs, by replacing the transformation Fϕ with the generator. However, mathemat-

ically, exponential tilting of non-invertible generator model is more complicated, as pθ,ϕ(x)

is not in closed form, and the distribution hθ,ϕ(z) requires evaluating an integral. There-

fore, exponential tilting of flow based model is more convenient. Nevertheless, due to the

strong invertible constraint on the structure of normalizing flow models, they cannot easily

transport complex multimodal data, and their sample quality on images is limited. It might

be a better idea to exponentially tilt generator models, which does better in modeling the

complex data distribution. In the next subsection, we will introduce the case where the base

distribution is a VAE.

4.3.2 VAEBM: VAEs as the Base Distribution

Here we discuss the case when the base model of the exponential tilting framework is a

VAE, and we name this model VAEBM. Note that VAEs are latent variable models without

a tractable marginal distribution, and therefore the VAEBM model is also written in the form

of the joint distribution over (x, z). Formally, we define the generative model in VAEBM as

pθ,ϕ(x, z) =
1

Zθ,ϕ
pϕ(x, z)e−fθ(x), (4.11)

where pϕ(x, z) = pϕ(z)pϕ(x|z) is a VAE generator and fθ(x) is a neural network-based

energy function, operating only in the x space. Marginalizing out the latent variable z gives

pθ,ϕ(x) =
1

Zθ,ϕ

∫
pϕ(x, z)e−fθ(x)dz =

1

Zθ,ϕ
pϕ(x)e−fθ(x), (4.12)

where pϕ(x) is the (intractable) marginal distribution of the VAE.

Given a training dataset, the parameters of VAEBM, θ, ϕ, can trained by maximizing
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the marginal log-likelihood on the training data:

log pθ,ϕ(x) = log pϕ(x) − fθ(x) − logZθ,ϕ (4.13)

≥ Ez∼qψ(z|x)[log pϕ(x|z)] −DKL(qψ(z|x)||pϕ(z))︸ ︷︷ ︸
Lvae(x,ψ,ϕ)

−fθ(x) − logZθ,ϕ︸ ︷︷ ︸
LEBM(x,θ,ϕ)

, (4.14)

where ψ denotes the parameter of the VAE’s encoder. Here we replace log pϕ(x) with its

variational lower bound. Equation 4.14 forms the objective function for training VAEBM.

The first term corresponds to the VAE objective and the second term corresponds to training

the EBM component. Next, we discuss how we can optimize this objective.

4.3.3 Training of VAEBM

We mentioned that we want to pre-train the base generative model and then train the EBM

as a correction. In the case of VAEBM, the two-stage training is not only beneficial but also

necessary, as we will explain the difficulty of jointly training the VAE and EBM.

Difficulties of Joint Training:

The whole VAEBM in Equation 4.11 is a special case of EBM, so it can be trained by

maximum likelihood. The subtle thing is that the log partition function logZθ,ϕ depends on

both ϕ and θ. We show that logZθ,ϕ has the gradients

∂θ logZθ,ϕ = Ex∼pθ,ϕ(x) [−∂θfθ (x)] and ∂ϕ logZθ,ϕ = Ex∼pθ,ϕ(x)
[
∂ϕ log pϕ(x)

]
. (4.15)

The derivation is as follows. Recall that Zθ,ϕ =
∫
pϕ(x)e−fθ(x)dx. For the derivative of
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logZθ,ϕ w.r.t. ϕ, we have:

∂

∂ϕ
logZθ,ϕ =

∂

∂ϕ
log

(∫
pϕ(x)e−fθ(x)dx

)
=

1

Zθ,ϕ

∫
∂pϕ(x)

∂ϕ
e−fθ(x)dx

=
1

Zθ,ϕ

∫
pϕ(x)e−fθ(x)

∂ log pϕ(x)

∂ϕ
dx

=

∫
pθ,ϕ(x)

∂ log pϕ(x)

∂ϕ
dx

= Ex∼pθ,ϕ(x)

[
∂ log pϕ(x)

∂ϕ

]
(4.16)

Similarly, it is easy to show that ∂
∂θ logZθ,ϕ = Ex∼pθ,ϕ(x,z)

[
−∂fθ(x)

∂θ

]
. Intuitively, both

gradients encourage reducing the likelihood of the samples generated by the VAEBM model.

Since, pθ,ϕ is an EBM, the expectation can be approximated using MCMC samples.

The first gradient in Equation 4.15 can be estimated easily by evaluating the gradient

of the energy function at samples drawn from the VAEBM model pθ,ϕ(x) using MCMC.

However, the second term involves computing the intractable ∂
∂ϕ log pϕ(x). Estimating

∂
∂ϕ log pϕ(x) requires sampling from the VAE’s posterior distribution, given model samples

x ∼ pθ,ϕ(x). To see this, note that Equation 4.16 can be further expanded to:

∂

∂ϕ
logZθ,ϕ = Ex∼pθ,ϕ(x)

[
Ez′∼pϕ(z′|x)

[
∂ log pϕ(x, z′)

∂ϕ

]]
,

which can be approximated by first sampling from VAEBM using MCMC (i.e., x ∼ pθ,ϕ(x))

and then sampling from the true posterior of the VAE (i.e., z′ ∼ pϕ(z′|x)). We cannot

directly draw samples from the true posterior, and approaches can be used to draw approx-

imate samples from pϕ(z′|x): i) We can replace pϕ(z′|x) with the approximate posterior

qψ(z′|x). However, the quality of this estimation depends on how well qψ(z′|x) matches the

true posterior on samples generated by pθ,ϕ(x, z), which can be very different from the real
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data samples; ii) alternatively, we can use MCMC sampling to sample z′ ∼ pϕ(z′|x). To

speed up MCMC, we can initialize the z′ samples in MCMC with the original z samples that

were drawn in the outer expectation (i.e., x, z ∼ pθ,ϕ(x, z)). However, with this approach,

the computational complexity of the gradient estimation for the negative phase is doubled, as

we now require running MCMC twice, once for x, z ∼ pθ,ϕ(x, z) and again for z′ ∼ pϕ(z′|x).

Two-stage Training of VAEBM:

To avoid the computational complexity of estimating this term, for example with a second

round of MCMC, we propose a two-stage algorithm for training VAEBM. In the first stage,

we train the VAE model in our VAEBM by maximizing the Lvae(x, θ, ϕ) term in Equation

4.14. This term is identical to the VAE’s objective, thus, the parameters ϕ and ψ are trained

with the usual ELBO. In the second stage, we keep the VAE model fixed and only train

the EBM component. Since ϕ is now fixed, we only require optimizing LEBM(x, θ, ϕ) w.r.t.

θ, the parameters of the energy function. The gradient of L(θ) = Ex∼pdata [LEBM(x, θ, ϕ)]

w.r.t. θ is:

∂θL(θ) = Ex∼pdata(x) [−∂θfθ (x)] + Ex∼pθ,ϕ(x) [∂θfθ (x)] , (4.17)

which decomposes into a positive and a negative phase.

We can entirely avoid the additional computational complexity and the complications of

estimating ∂
∂ϕ logZθ,ϕ, if we assume that the VAE is held fixed when training the EBM com-

ponent of our VAEBM. This way, we require running MCMC only to sample x ∼ pθ,ϕ(x, z)

to compute ∂
∂θ logZθ,ϕ.

Besides avoiding the difficulties of estimating the full gradient of logZθ,ϕ, two-stage

training has additional advantages. As we discussed in Sectionapter 2.3, updating θ is

computationally expensive, as each update requires an iterative MCMC procedure to draw
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samples from the model. The first stage of our training minimizes the distance between the

VAE model and the data distribution, and in the second stage, the EBM further reduces

the mismatch between the model and the data distribution. As the pre-trained VAE pϕ(x)

provides a good approximation to pdata(x) already, we expect that a relatively small number

of expensive updates for training ψ is needed. Moreover, the pre-trained VAE provides

a latent space with an effectively lower dimensionality and a smoother distribution than

the data distribution, which facilitates a more efficient MCMC. We will discuss this in the

following section.

Reparameterized sampling in the negative phase:

For gradient estimation in the negative phase, we can draw samples from the model using

MCMC. Naively, we can perform ancestral sampling, first sampling from the prior pϕ(z),

then running MCMC for pϕ(x|z)e−fθ(x) in x-space. This is problematic, since pϕ(x|z) is

often sharp and MCMC cannot mix when the conditioning z is fixed.

To overcome the issue, we instead run the MCMC iterations in the joint space of z and x.

Furthermore, we accelerate the sampling procedure using reparameterization for both x and

the latent variables z. Recall that when sampling from the VAE, we first sample z ∼ pϕ(z)

from the prior and then sample x ∼ pϕ(x|z). This sampling scheme can be reparameterized

by sampling from a fixed noise distribution (e.g., (ϵz, ϵx) ∼ pϵ = N (0, I)) and deterministic

transformations Tϕ such that

z = T z
ϕ(ϵz), x = Tx

ϕ (z(ϵz), ϵx) = Tx
ϕ (T z

ϕ(ϵz), ϵx). (4.18)

Here, T z
ϕ denotes the transformation defined by the prior that transforms noise ϵ into prior

samples z. When the prior is unit Gaussian, T z
ϕ is just the identity transformation. Tx

ϕ

represents the decoder that transforms noise ϵx into samples x, given prior samples z.
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We can apply the same reparameterization when sampling from pθ,ϕ(x, z). This corre-

sponds to sampling (ϵx, ϵz) from the “base distribution”:

hθ,ϕ (ϵx, ϵz) ∝ e
−fθ

(
Tx
θ (T

z
ϕ (ϵz),ϵx)

)
pϵ (ϵx, ϵz) , (4.19)

and then transforming them to x and z via Eq. 4.18.

Here we will provide a derivation. Suppose we draw the re-parametrization variables

(ϵx, ϵz) ∼ pϵ(ϵx, ϵz). For convenience, we denote

Tϕ(ϵx, ϵz) =
(
Tx
ϕ (T z

ϕ(ϵz), ϵx), T z
ϕ(ϵz)

)
= (x, z). (4.20)

Since Tϕ is a deterministic and invertible transformation that maps (ϵx, ϵz) to (x, z), by the

change of variables formula, we can write

pϕ(x, z) = pϵ(T
−1
ϕ (x, z))

∣∣∣∣det

(
J
T−1
ϕ

(x, z)

)∣∣∣∣ , (4.21)

where J
T−1
ϕ

is the Jacobian of T−1
ϕ . Consider a Gaussian distribution as a simple example:

if z ∼ N (µz, σz) and x|z ∼ N (µx(z), σx(z)), then

z = T z
ϕ(ϵz) = µz + σz · ϵz, x = Tx

ϕ (ϵx, ϵz) = µx(z) + σx(z) · ϵx,

and

J
T−1
ϕ

(x, z) = [σx(z)−1, σ−1
z ].

Recall that the generative model of our EBM is

pθ,ϕ(x, z) =
e−fθ(x)pϕ(x, z)

Zθ,ϕ
. (4.22)
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We can apply the change of variable to pθ,ϕ(x, z) to a distribution in (ϵx, ϵz) space:

hθ,ϕ(ϵx, ϵz) = pθ,ϕ(Tϕ(ϵx, ϵz))
∣∣∣det

(
JTϕ (ϵx, ϵz)

)∣∣∣ , (4.23)

where JTϕ is the Jacobian of Tϕ. Since we have the relation

Jf−1 ◦ f = J−1
f (4.24)

for invertible function f , we have that

hθ,ϕ(ϵx, ϵz) = pθ,ϕ(Tϕ(ϵx, ϵz))
∣∣∣det

(
JTϕ (ϵz, ϵx)

)∣∣∣ (4.25)

=
1

Zθ,ϕ
e−fθ(Tϕ(ϵx,ϵz))pϕ(Tϕ(ϵx, ϵz))

∣∣∣det
(
JTϕ (ϵx, ϵz)

)∣∣∣ (4.26)

=
1

Zθ,ϕ
e−fθ(Tϕ(ϵx,ϵz))pϵ(T−1

θ (x, z))

∣∣∣∣det

(
J
T−1
θ

(x, z)

)∣∣∣∣ ∣∣∣ det
(
JTϕ (ϵx, ϵz)

) ∣∣∣
(4.27)

=
1

Zθ,ϕ
e−fθ(Tϕ(ϵx,ϵz))pϵ(T−1

θ (x, z)) (4.28)

=
1

Zθ,ϕ
e−fθ(Tϕ(ϵx,ϵz))pϵ(ϵx, ϵz), (4.29)

which is the distribution in Equation 4.19. After we obtained samples (ϵx, ϵz) from the

distribution in Equation 4.19, we obtain (x, z) by applying the transformation Tθ in Equation

4.18. An illustration of VAEBM with reparametrization is shown in Figure

An alternative, but simpler explanation for the reparamterization with ϵx, ϵz is also pre-

sented. Suppose we have x = T (ϵ) where ϵ could be anything with known density p(ϵ). Then

E[h(x)] = E[h(T (ϵ))], for any function h. So
∫
h(x)p(x)dx =

∫
h(T (ϵ))p(ϵ)dϵ, and with the

tilting:
∫
h(x)p(x)ef(x)dx =

∫
h(T (ϵ))ef(T (ϵ))p(ϵ)dϵ. So if we sample from ef(T (ϵ))p(ϵ) and

pass it through T (ϵ), we can get a sample from the tilted distribution p(v)ef(v).

Note that ϵz and ϵx have the same scale, as pϵ (ϵx, ϵz) is a standard Normal distribution,
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Figure 4.4: Our VAEBM is composed of a VAE generator (including the prior and decoder)
and an energy function that operates on samples x generated by the VAE. The VAE compo-
nent is trained first, using the standard VAE objective; then, the energy function is trained
while the generator is fixed. Using the VAE generator, we can express the data variable x as
a deterministic function of white noise samples ϵz and ϵx. This allows us to reparameterize
sampling from our VAEBM by sampling in the joint space of ϵz and ϵx.

while the scales of x and z can be very different. Thus, running MCMC sampling with

this reparameterization in the (ϵx, ϵz)-space has the benefit that we do not need to tune the

sampling scheme (e.g., step size in LD) for each variable. This is particularly helpful when

z itself has multiple groups, as in our case. We will compare sampling in (ϵx, ϵz)-space and

in (x, z)-space in the following paragraphs.

Comparison of Sampling in (ϵx, ϵz)-space and in (x, z)-space:

Above we showed that sampling from hψ,θ(x, z) is equivalent to sampling from hψ,θ(ϵx, ϵz)

and applying the appropriate variable transformation. Here, we further analyze the connec-

tions between sampling from these two distributions with Langevin dynamics. Since each

component of x and z can be re-parametrzied with scaling and translation of standard Gaus-

sian noise, without loss of generality, we assume a variable c (c can be a single latent variable

in z or a single pixel in x) and write

c = µ+ σϵ.
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Suppose we sample in the ϵ space with energy function f on c and step size η. The update

for ϵ is

ϵt+1 = ϵt −
η

2
∇ϵf +

√
ηωt, ωt ∼ N (0, I).

Now we plug ϵt+1 into the expression of c while noting that ∇ϵf = σ∇cf . We obtain

ct+1 = µ+ σϵt+1 = µ+ σ
(
ϵt −

η

2
∇ϵf +

√
ηωt

)
= µ+ σϵt −

σ2η

2
∇cf +

√
ησ2ωt

= ct −
σ2η

2
∇cf +

√
ησ2ωt.

Therefore, we see that running Langevin dynamics in (ϵx, ϵz)-space is equivalent to running

Langevin dynamics in (x, z)-space with step size for each component of z and x adjusted

by its variance. However, considering the high dimensionality of x and z, the step size

adjustment is difficult to implement.

The analysis above only considers a variable individually. More importantly, our latent

variable z in the prior follows block-wise auto-regressive Gaussian distributions, so the vari-

ance of each component in zi depends on the value of z<i. We foresee that because of this

dependency, using a fixed step size per component of z will not be effective, even when it

is set differently for each component. In contrast, all the components in (ϵx, ϵz)-space have

a unit variance. Hence, a universal step size for all the variables in this space can be used.

We will empirically compare sampling in (ϵx, ϵz)-space and in (x, z)-space in Section 4.4.

4.3.4 An Extension to the Training Objective of VAEBM

In the first stage of training VAEBM, the VAE model is trained by maximizing the training

data log-likelihood which corresponds to minimizing an upper bound onDKL(pdata(x)||pϕ(x))

120



w.r.t. ϕ. In the second stage, when we are training the EBM component, we use the VAE

model to sample from the joint VAEBM by running the MCMC updates in the joint space of

ϵz and ϵx. Ideally, we may want to bring pϕ(x) closer to pθ,ϕ(x) in the second stage, because

when pϕ(x) = pθ,ϕ(x), we will not need the expensive updates for θ. We can bring pϕ(x)

closer to pθ,ϕ(x) by minimizing DKL(pϕ(x)||pθ,ϕ(x)) with respect to ϕ which was recently

discussed in the context of an EBM-interpretation of GANs by Che et al. [2020]. To do so,

for one training step of updating ϕ, we assume the target distribution pθ,ϕ(x) is fixed and

create a copy of ϕ, named ϕ′, and we update ϕ′ by the gradient:

∇ϕ′DKL(pϕ′(x)||pθ,ϕ(x)) = ∇ϕ′Ex∼pϕ′(x) [fθ(x)] . (4.30)

In other words, one update step for ϕ′ that minimizes DKL(p′ϕ(x)||pθ,ϕ(x)) w.r.t. ϕ′ can be

easily done by drawing samples from p′ϕ(x) and minimizing the energy-function w.r.t. ϕ′.

Note that this approach is similar to the generator update in training Wasserstein GANs

[Arjovsky et al., 2017]. Due to the nature of adversarial training, the above KL objective

will encourage pϕ(x) to model dominants modes in pθ,ϕ(x), and it may cause pϕ(x) to drop

modes.

A derivation of Equation 4.30 will be given, where we largely follow [Che et al., 2020].

Note that every time we update ϕ, we are actually taking the gradient w.r.t ϕ′, which can

be viewed as a copy of ϕ and is initialized as ϕ. In particular, we should note that the ϕ in
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hθ,ϕ(x) is fixed. Therefore, we have

∇ϕ′DKL(pϕ′(x)||pθ,ϕ(x)) = ∇ϕ′

∫
pϕ′(x)

[
log pϕ′(x) − log pθ,ϕ(x)

]
dx

=

∫ [
∇ϕ′pϕ′(x)

] [
log pϕ′(x) − log pθ,ϕ(x)

]
dx

+

∫
pϕ′(x)

[
∇ϕ′ log pϕ′(x) −∇ϕ′ log pθ,ϕ(x)

]
dx︸ ︷︷ ︸

=0

(4.31)

=

∫ [
∇ϕ′pϕ′(x)

] [
log pϕ′(x) − log pθ,ϕ(x)

]
dx, (4.32)

where the second term in Equation 4.31 is 0 because the log pθ,ϕ(x) does not depend on ϕ′

and the expectation of the score function is 0:

∫
pϕ′(x)∇ϕ′ log pϕ′(x)dx = Ex∼pϕ′(x)

[
∇ϕ′ log pϕ′(x)

]
= 0.

Recall that θ′ has the same value as θ before the update, so

log pϕ′(x) − log hψ,θ(x) = log

[
pϕ′(x)

pθ(x)e−fθ(x)

]
+ logZθ,ϕ

= fθ(x) + logZθ,ϕ. (4.33)

Plug Equation 4.33 into Equation 4.32, we have

∇ϕ′DKL(pϕ′(x)||pθ,ϕ(x)) =

∫
∇ϕ′pϕ′(x)

[
fθ(x) + logZψ,θ

]
dx

= ∇ϕ′Ex∼pϕ′(x) [fθ(x)] , (4.34)

since

∫
∇ϕ′pϕ′(x) logZθ,ϕdx = ∇ϕ′ logZθ,ϕ

∫
pϕ′(x)dx = ∇ϕ′ logZθ,ϕ = 0.
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Intuitively, the extension described in this section can be summarized as alternatively

updating the energy function and VAE’s decoder, where the decoder update corresponds

to decrease the energy value of its output. In Section 4.4, we will present empirical re-

sults of training with an additional loss term that updates the parameter ϕ to minimize

DKL(pϕ(x)||pθ,ϕ(x)) as explained above.

4.4 Experimental Results

In this section, we evaluate our proposed exponential tilting framework with extensive ex-

periments. We divide our experimental studies into three parts according to different types

of base generative models in the exponential tilting framework. Throughout the study, our

main focus is on the relative improvements of sampling from the EBMs over sampling from

base generative models.

4.4.1 Small VAEs as the Base Model

Toy Datasets

We first present the results of VAEBM when the base generative model is a simple VAE

with one layer of stochastic latent variables. To give a quick proof-of-concept, we apply

our method on toy datasets (25-Gaussians and Swiss Roll) following the setting of Tanaka

[2019]. The decoder and the energy function both have simple, fully connected structures as

described in Tanaka [2019].

We show qualitative results in Figure 4.5. We observe that although samples from VAEs

can basically cover the shape of the true distribution, many samples still appear in low-

density regions. In contrast, by sampling from VAEBM, we can accurately preserve all

modes in the target distribution while eliminating spurious modes in the 25-Gaussians case.

In the Swiss Roll case, it is also clear that the EBM better captures the underlying data
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distribution

(a) Swiss Roll

(b) 25-Gaussians

Figure 4.5: VAEBMs trained on Swiss Roll and 25-Gaussians datset.

We also compute the test likelihood on 25-Gaussians. Note that VAEBM is an explicit

likelihood model with a parameterized density function. However, like other energy-based

models, the estimation of the exact likelihood is difficult due to the intractable partition

function logZ. One possible way to estimate the partition function is to use Annealed

Importance Sampling (AIS) [Neal, 2001]. However, using AIS to estimate logZ in high-

dimensional spaces is challenging. In fact, Du and Mordatch [2019] report that the estimation

does not converge in 2 days on CIFAR-10. Furthermore, AIS gives a stochastic lower bound

on logZ, and therefore the likelihood computed with this estimated logZ would be an upper

bound for the true likelihood. This makes the estimated likelihood hard to compare with

the VAE’s likelihood estimate, which is usually a lower bound on the true likelihood [Burda

et al., 2015].

In the 2-D domain, the partition function logZ can be accurately estimated by a numer-
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MNIST Fashion CIFAR-10

VAE 18.9 57.1 139.6
VAEBM 16.0 38.1 108.4

Table 4.1: Comparing the FID scores of base VAEs and VAEBMs.

ical integration scheme. For the VAE, we use the IWAE bound [Burda et al., 2015] with

10,000 posterior samples to estimate its likelihood. We use 100,000 test samples from the

true distribution to evaluate the likelihood. Our VAEBM obtains the average log-likelihood

of -1.50 nats on test samples, which significantly improves the VAE, whose average test

likelihood is -2.97 nats. As a reference, we also analytically compute the log-likelihood of

test samples under the true distribution, and the result is -1.10 nats.

Image Datasets

We also evaluate the performance of VAEBM on image datasets, including MNIST, Fashion

MNIST and CIFAR-10. We show some qualitative results of VAEBMs on top of simple

convolutional VAEs in Figure 4.6. From Figure 4.6, we clearly observe that samples generated

by VAEBMs have higher quality than samples from base VAEs.

Quantitatively, we compared the FID score of the VAEs and VAEBMs, and results are

shown in Table 4.1. We observe that sampling from VAEBMs significantly improves the

quality of generated samples over directly sampling from the base VAEs.

Experimental Settings:

For the simple VAE model, we use the DCGAN Radford et al. [2015] structure on the

decoders of our VAEs, and the encoders are designed to be symmetric to the decoder. We

use latent dimension 100 for all experiments. For MNIST and Fashion MNIST datasets, we

use binary cross-entropy as reconstruction loss, while for CIFAR-10, we use MSE loss. All

VAEs are trained for 256 epochs with batch size 128 and Adam optimizer with fixed learning
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Figure 4.6: Qualitative results of VAEBMs with simple comvolutional VAE as the backbone
on MNIST, Fashion MNIST and CIFAR-10. Left: samples generated by VAEs. Right:
samples generated by VAEBMs.
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rate 1 × 10−3.

We use a simplified version of the network structure described in Du and Mordatch [2019]

to define our Eθ. In particular, our method consists of 3 ResNet blocks with 64 hidden

channels and 3 resent blocks with 128 hidden channels, followed by Global Sum Pooling and

an FC layer. For Langevin dynamics, we use step size 0.01 and run the chain for 60 steps.

We find adding a small amount (with a coefficient 0.1) of energy regularization is helpful for

avoiding over-fitting early in training. After training, we find sampling latent variables with

a longer chain leads to better performances. We generate samples for testing by running the

chain for 100 steps.

4.4.2 Normalizing Flows as the Base Model

In this section, we study the exponential tilting with normalizing flows (in particular, GLOW

[Kingma and Dhariwal, 2018]) as the base generative model on image datasets. Note that we

do not use normalizing flows on toy datasets, because the vanilla flow is heavily constrained

by the manifold structure of the prior distribution, making it very hard to model distributions

like the 25-Gaussians.

We show qualitative results in Figure 4.7. We clearly observe that samples generated

by the EBMs have higher quality than samples from the base GLOW model. On MNIST

and Fashion MNIST, samples obtained through the latent EBM have smoother shapes than

samples from the GLOW. On CIFAR-10, the latent EBM effectively corrects the noisy back-

grounds of the samples generated by the GLOW. We illustrate the process of Langevin

dynamics sampling from the latent EBM in Figure 4.8, where we generate samples for every

ten iterations. Apparently, the Langevin dynamics is going towards latent variables that

produce more semantically meaningful and sharp samples.

Quantitatively, we compared the FID score of the GLOWs and GLOWs tilted with EBMs,

and results are shown in Table 4.2, where we observe significant improvements made by the
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Figure 4.7: Qualitative results of exponential tilting with GLOW backbone on MNIST,
Fashion MNIST and CIFAR-10. Left: samples generated by from GLOWs. Right: samples
generated by the EBMs.
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Figure 4.8: MNIST Langevin dynamics visualization, initialized at samples from prior (the
leftmost column).

MNIST Fashion CIFAR-10

GLOW 29.4 58.7 76.2
GLOW + EBM 12.3 41.6 67.8

Table 4.2: Comparing the FID scores of base GLOWs and GLOWs tilted with EBMs.

exponential tilting.

Experimental Settings:

We train GLOW models following the settings provided in Nalisnick et al. [2018]. For MNIST

and Fashion MNIST,we use a GLOW architecture of 2 blocks of 16 affine coupling layers,

squeezing the spatial dimension in between the 2 blocks. For the coupling function, we

use a 3-layer Highway network with 64 hidden channels. For CIFAR-10, we use 3 blocks

of 32 affine coupling blocks, applying the multi-scale architecture between each block. The

coupling function is a 3-layer Highway network with 256 hidden channels. Note that we

modify the model size to fit in a single GPU for training. For MNIST and Fashion MNIST,

we train the GLOW for 128 epochs with batch size 64 and Adam optimizer with fixed
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learning rate 5 × 10−4. For CIFAR-10, we train the GLOW for 256 epochs with batch size

64 and Adam optimizer with fixed learning rate 5 × 10−4.

For the EBM component, we adopt the same setting as in Sectionapter 4.4.1.

4.4.3 Large Hierarchical VAEs as the Base Model

Our exponential tilting framework is constrained by the capacity of the base generative

model. In previous sections where simple VAEs with one-layer latent variables or normalizing

flows served as the base model, the resulting exponential tilting models cannot obtain sample

quality competitive to GANs because of the limitation of base models. For example, a

simple VAE even cannot reconstruct data well, which significantly restricts its ability to

generate new samples. In this section, we push the limit of exponential tilting by adopting

large hierarchical VAEs as the base model. In particular, we try to design VAEBM with

NVAE [Vahdat and Kautz, 2020] as the backbone. NVAE is currently the most powerful

VAE model. It increases the expressivity of both prior and approximate posterior using

hierarchical latent variables [Kingma et al., 2016] where z is decomposed into a set of disjoint

groups, z = {z1, z1, . . . , zL}, and the prior pθ(z) =
∏
l pθ(zl|z<l) and the approximate

posterior qϕ(z|x) =
∏
l qϕ(zl|z<l,x) are defined using autoregressive distributions over the

groups. The conditioning is implemented with the combination of samples and deterministic

networks. See Figure 4.9 for an illustration on the implementation of conditioning. NVAE

obtains impressive results on likelihood modeling (and hence nearly perfect reconstruction),

however, the sample quality of NVAE is still limited. We hope that the exponential tilting

framework will significantly improve the sample quality of NVAE and achieve competitive

performance with GANs.

In this section, we evaluate our proposed VAEBM with NVAE backbone through com-

prehensive experiments. Specifically, we benchmark sample quality and provide detailed

ablation studies on training techniques. In addition, we study mode coverage of our model
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Figure 4.9: The neural networks implementing an encoder qϕ(z|x) and generative model
pθ(x, z) for a 3-group hierarchical VAE. Figure taken from Vahdat and Kautz [2020]. Blocks
with ’r’ denotes residual neural networks. Blocks with ’+’ denotes feature combination (e.g.,
concatenation). Blocks with ’h ’ denotes trainable parameters.
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and test for spurious modes. Note that in NVAE, the prior distribution is a group-wise

auto-regressive Gaussian, and the conditional pixel-wise distributions in x are also Gaus-

sian. Therefore, the reparameterization introduced in Section 4.3.3 corresponds to shift and

scale transformations.

Image Generation:

In Table 4.3, we quantitatively compare the sample quality of VAEBM with different gener-

ative models on (unconditional) CIFAR-10. We adopt Inception Score (IS) [Salimans et al.,

2016] and FID [Heusel et al., 2017] as quantitative metrics. We observe that our VAEBM

outperforms previous EBMs and other explicit likelihood-based models by a large margin.

Note that introducing persistent chains during training only leads to slight improvement,

while Du and Mordatch [2019] rely on persistent chains with a sample replay buffer. This is

likely due to the efficiency of sampling in latent space. Our model also produces significantly

better samples than NVAE, the VAE component of our VAEBM, implying a significant

impact of our proposed energy-based refinement. We also compare our model with state-

of-the-art GANs and recently proposed score-based models, and we obtain comparable or

better results. Thus, we largely close the gap to GANs and score-models, while maintaining

the desirable properties of models trained with maximum likelihood, such as fast sampling

and better mode coverage.

Qualitative samples generated by our model are shown in Figure 4.10 and intermediate

samples along MCMC chains in Figure 4.11. We find that VAEBM generates good samples

by running only a few MCMC steps. Initializing MCMC chains from the pre-trained VAE

also helps quick equilibration.

We also train VAEBM on larger images, including CelebA 64, CelebA HQ 256 [Karras

et al., 2017] and LSUN Church 64 [Yu et al., 2015]. We report the FID scores for CelebA

64 and CelebA HQ 256 in Tables 4.4 and 4.5. On CelebA 64, our model obtains results
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Figure 4.10: CIFAR-10 samples generated by VAEBM with NVAE backbone.
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Figure 4.11: Visualizing MCMC sampling chains. Samples are generated by running 16 LD
steps. Chains are initialized with pre-trained VAE. We show intermediate samples at every
2 steps.
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Table 4.3: Comparing VAEBM and other generative models with IS and FID scores for
unconditional generation on CIFAR-10.

Model IS↑ FID↓

Ours
VAEBM w/o persistent chain 8.21 12.26
VAEBM w/ persistent chain 8.43 12.19

EBMs

IGEBM [Du and Mordatch, 2019] 6.02 40.58
EBM with short-run MCMC [Nijkamp et al., 2019] 6.21 -
F-div EBM [Yu et al., 2020a] 8.61 30.86
FlowCE [Gao et al., 2020] - 37.3
FlowEBM [Nijkamp et al., 2022] - 78.12
GEBM [Arbel et al., 2020] - 23.02
Divergence Triangle [Han et al., 2020] - 30.1

Other
Likeli-
hood
Models

Glow [Kingma and Dhariwal, 2018] 3.92 48.9
PixelCNN [Oord et al., 2016] 4.60 65.93
NVAE [Vahdat and Kautz, 2020] 5.51 51.67
VAE with EBM prior [Pang et al., 2020] - 70.15

Score-
based
Models

NCSN [Song and Ermon, 2019] 8.87 25.32
NCSN v2 [Song and Ermon, 2020] - 31.75
Multi-scale DSM [Li et al., 2019a] 8.31 31.7
Denoising Diffusion [Ho et al., 2020] 9.46 3.17

GAN-
based
Models

SNGAN [Miyato et al., 2018] 8.22 21.7
SNGAN+DDLS [Che et al., 2020] 9.09 15.42
SNGAN+DCD [Song et al., 2020b] 9.11 16.24
BigGAN [Brock et al., 2018] 9.22 14.73
StyleGAN2 w/o ADA [Karras et al., 2020a] 8.99 9.9

Others
PixelIQN [Ostrovski et al., 2018] 5.29 49.46
MoLM [Ravuri et al., 2018] 7.90 18.9

comparable with the best GANs. Although our model obtains worse results than some

advanced GANs on CelebA HQ 256, we significantly reduce the gap between likelihood

based models and GANs on this dataset. On LSUN Church 64, we obtain FID 13.51, which

significantly improves the NVAE baseline FID 41.3.

We present qualitative samples of CelebA 64, CelebA HQ 256 and LSUN Church 64 in

Figure 4.12, 4.13 and 4.14 respectively. We observe that the generated images are realistic

and sharp. In Figure 4.15 and 4.16, we visualize the effect of sampling from VAEBM by

displaying sample pairs before and after running Lanegvin dynamics, where we clearly see

that the EBM significantly refines the base VAE.
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Figure 4.12: CelebA 64 samples generated by VAEBM with NVAE backbone.

136



Figure 4.13: CelebA HQ 256 samples generated by VAEBM with NVAE backbone.
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Figure 4.14: LSUN church 64 samples generated by VAEBM with NVAE backbone.
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Figure 4.15: Visualizing the effect of MCMC sampling on CelebA HQ 256 dataset. Samples
are generated by initializing MCMC with full temperature VAE samples. MCMC sampling
fixes the artifacts of VAE samples, especially on hairs.
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Figure 4.16: Visualizing the effect of MCMC sampling on LSUN Church 64 dataset. For
each subfigure, the top row contains initial samples from the VAE, and the bottom row
contains corresponding samples after MCMC. We observe that MCMC sampling fixes the
corrupted initial samples and refines the details.
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Table 4.4: Generative performance of VAEBM on CelebA 64

Model FID↓
VAEBM (ours) 5.31
NVAE ([Vahdat and Kautz, 2020]) 14.74
Flow CE ([Gao et al., 2020]) 12.21
Divergence Triangle ([Han et al., 2020]) 24.7

NCSNv2 ([Song and Ermon, 2020]) 26.86
COCO-GAN ([Lin et al., 2019]) 4.0
QA-GAN ([Parimala and Channappayya, 2019]) 6.42

Table 4.5: Generative performance of VAEBM on CelebA HQ 256

Model FID↓
VAEBM (ours) 20.38
NVAE ([Vahdat and Kautz, 2020]) 45.11
GLOW ([Kingma and Dhariwal, 2018]) 68.93

Advers. LAE ([Pidhorskyi et al., 2020]) 19.21
PGGAN ([Karras et al., 2017]) 8.03

Ablation Studies:

To better understand the VAEBM model, in Table 4.6, we compare VAEBM to several

closely related baselines. All the experiments here are performed on CIFAR-10, and for

simplicity, we use smaller models than those used in Table 4.3.

Data space vs. augmented space: One key difference between VAEBM and previous

work such as Du and Mordatch [2019] is that our model is defined on the augmented space

(x, z), while their EBM only involves x. Since we pre-train the VAE, one natural question is

whether our strong results are due to good initial samples x from the VAE, which are used

to launch the MCMC chains. To address this, we train an EBM purely on x as done in Du

and Mordatch [2019]. We also train another EBM only on x, but we initialize the MCMC

chains with samples from the pre-trained NVAE instead of noise. As shown in line 3 of Table

4.6, this initialization helps the EBM which is defined only on x. However, VAEBM in the

augmented space outperforms the EBMs on x only by a large margin.

Adversarial training vs. sampling: When training EBMs, gradient for the energy
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Table 4.6: Generative performance of VAEBM on CelebA HQ 256

Model IS↑ FID↓
NVAE (Vahdat and Kautz) 5.19 55.97
EBM on x (Du and Mordatch) 5.85 48.89
EBM on x, MCMC init w/ NVAE 7.28 29.32
WGAN w/ NVAE decoder 7.41 20.39
VAEBM + DKL(pϕ(x)||pθ,ϕ(x)) 8.05 14.00
VAEBM (ours) 8.15 12.96

function is similar to the gradient updates of WGAN’s discriminator [Arjovsky et al., 2017].

The key difference is that we draw (approximate) samples from the model by MCMC, while

WGAN draws negative samples from a generator [Che et al., 2020]. WGAN updates the

generator by playing an adversarial game, while we only update the energy function fθ. We

compare these two methods by training the energy function fθ and a generator with the

WGAN objective and initializing the generator with the NVAE decoder. As shown in line

4 of Table 4.6, we significantly outperform the WGAN version of our model, implying the

advantage of our method over adversarial training.

Updating VAE generator while training EBM: As discussed in Sectionapter 4.3.4,

we can jointly train θ and ϕ, where ϕ is updated with additional loss terms that minimize

DKL(pϕ(x)||pθ,ϕ(x)). We train VAEBMs with these additional loss and present the results

in line 5 in Table 4.6. We observe that updating ϕ with additional losses does not improve

the generative performances, and updating the decoder is unnecessary. This is likely because

the initial VAE is pulled as closely as possible to the data distribution already, which is also

the target for the joint VAEBM pθ,ϕ(x). Therefore, we adopt the simplest training method

where we only minimize DKL(pdata(x)||pθ,ϕ(x)).

In Figure 4.17, we show qualitative samples from models corresponding to each item in

Table 4.6.
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(a) NVAE baseline (b) WGAN, initialized with NVAE decoder

(c) EBM on x, MCMC initialized with NVAE
samples

(d) VAEBM with DKL(pϕ(x)||pθ,ϕ(x)) loss

(e) VAEBM

Figure 4.17: Qualitative results of ablation study
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Table 4.7: Generative performance of VAEBM on CelebA HQ 256

Model Modes↑ KL↓
VEEGAN ([Srivastava et al., 2017]) 761.8 2.173
PacGAN ([Lin et al., 2018]) 992.0 0.277
PresGAN ([Dieng et al., 2019]) 999.6 0.115
InclusiveGAN ([Yu et al., 2020b]) 997 0.200
StyleGAN2 ([Karras et al., 2020b]) 940 0.424
VAEBM (ours) 1000 0.087

Test for Spurious or Missing Modes

We evaluate mode coverage on StackedMNIST. This dataset contains images generated by

randomly choosing 3 MNIST images and stacking them along the RGB channels. Hence, the

data distribution has 1000 modes. After training a generative model on this dataset, we can

evaluate the mode coverage by classifying generated samples with a classifier on MNIST.

Following Lin et al. [2018], we report the number of covered modes and the KL divergence

from the categorical distribution over 1000 categories from generated samples to true data

(Table 4.7). VAEBM covers all modes and achieves the lowest KL divergence even compared

to GANs that are specifically designed for this task. Hence, our model covers the modes

more equally.

We also plot the histogram of likelihoods for CIFAR-10 train/test images in Figure 4.18.

We see that our model assigns similar likelihoods to both train and test set images. This

indicates that VAEBM generalizes well to unseen data and covers modes in the training data

well.

We evaluate spurious modes in our model by assessing its performance on out-of-distribution

(OOD) detection. Nalisnick et al. [2018], Xiao et al. [2020b] observe that some likelihood-

based generative models, including VAEs and normalizing flows, assign a higher likelihood

to OOD samples. One possible explanation is that likelihood-based models suffer from the

mismatch of density discussed in Sectionapter 4.1. Therefore, it is promising to improve

the OOD detection by exponential tilting. We use VAEBM trained on CIFAR-10, and es-
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Figure 4.18: Histogram of unnormalized log-likelihoods on 10k CIFAR-10 train and test set
images.

timate unnormalized log pθ,ϕ(x) on in-distribution samples (from CIFAR-10 test set) and

OOD samples from several datasets. Following Nalisnick et al. [2018], we use the area under

the ROC curve (AUROC) as a quantitative metric, where high AUROC indicates that the

model correctly assigns low density to OOD samples. In Table 4.8, we see that VAEBM

has significantly higher AUROC than NVAE, justifying our argument that the energy func-

tion reduces the likelihood of non-data-like regions. VAEBM also performs better than

IGEBM and JEM, while worse than HDGE. However, we note that JEM and HDGE are

classifier-based models, known to be better for OOD detection [Liang et al., 2018]. The good

performance on OOD detection suggests that our VAEBM successfully refine the density of

VAE by excluding non-data-like regions.

Comparison of Sampling in (ϵx, ϵz)-space and in (x, z)-space

In Section 4.3.3, we highlight the advantage of sampling in the reparametrization space

(ϵx, ϵz) over sampling in (x, z)-space, as it automatically adjust the per-element step size. To

further provide empirical evidence that adjusting the step size for each variable is necessary,
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Table 4.8: Table for AUROC↑ of log p(x) computed on several OOD datasets. In-distribution
dataset is CIFAR-10. Interp. corresponds to linear interpolation between CIFAR-10 images.

SVHN Interp. CIFAR100 CelebA

Un-
supervised
Training

NVAE [Vahdat and Kautz, 2020] 0.42 0.64 0.56 0.68
Glow [Kingma and Dhariwal, 2018] 0.05 0.51 0.55 0.57
IGEBM [Du and Mordatch, 2019] 0.63 0.7 0.5 0.7
Divergence Traingle [Han et al., 2020] 0.68 - - 0.56
VAEBM (ours) 0.83 0.7 0.62 0.77

Supervised
Training

JEM [Grathwohl et al., 2020] 0.67 0.65 0.67 0.75
HDGE [Liu and Abbeel, 2020] 0.96 0.82 0.91 0.8

we try sampling directly in (x, z)-space without adjusting the step size (i.e., use a universal

step size for all variables). Qualitative results are presented in Figure 4.19. We examine

several choices for the step size and we cannot obtain high-quality samples.

In conclusion, the re-parameterization provides an easy implementation to adjust step

size for each variable, and the adjustment is shown to be crucial to obtain good samples.

Implementation Details

In this section, we introduce the details of training and sampling from VAEBM. Codes for

the VAEBM implementation can be found at https://github.com/NVlabs/VAEBM.

NVAE: VAEBM uses NVAE as the pϕ(x) component in the model. We train the NVAE

with its official implementation1. We largely follow the default settings, with one major

difference that we use a Gaussian decoder instead of a discrete logistic mixture decoder as

in Vahdat and Kautz [2020]. The reason for this is that we can run Langevin dynamics only

with continuous variables. The number of latent variable groups for CIFAR-10, CelebA 64,

LSUN Church 64 and CelebA HQ 256 are 30, 15, 15 and 20, respectively.

Network for energy function: We largely adopt the energy network structure for

CIFAR-10 in Du and Mordatch [2019], and we increase the depth of the network for larger

images. There are 2 major differences between our energy networks and the ones used in

1. https://github.com/NVlabs/NVAE
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(a) Step size 8e-4 (b) Step size 8e-5

(c) Step size 8e-6

Figure 4.19: Qualitative samples obtained from sampling in (x, z)-space with different step
sizes.

Du and Mordatch [2019]: 1. we replace the LeakyReLU activations with Swish activations,

as we found it improves training stability, and 2. we do not use spectral normalization

[Miyato et al., 2018]; instead, we use weight normalization with data-dependent initialization

[Salimans and Kingma, 2016]. The network structure for each dataset is presented in Table

4.9.

Training of energy function: We train the energy function by minimizing the negative

log likelihood and an additional spectral regularization loss which penalizes the spectral norm

of each convolutional layer in fθ. The spectral regularization loss is also used in training

NVAE, as we found it helpful to regularize the sharpness of the energy network and better

stabilize training. We use a coefficient 0.2 for the spectral regularization loss.

We summarize some key hyper-parameters we used to train VAEBM in Table 4.10. On

all datasets, we train VAEBM using the Adam optimizer [Kingma and Ba, 2015] and weight

decay 3e−5. We use constant learning rates, shown in Table 4.10. Following Du and Mor-
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Table 4.9: Network structures for the energy function fθ(x)

CIFAR-10

3× 3 conv2d, 128
ResBlock down 128

ResBlock 128
ResBlock down 256

ResBlock 256
ResBlock down 256

ResBlock 256
Global Sum Pooling
FC layer → scalar

CelebA 64

3× 3 conv2d, 64
ResBlock down 64

ResBlock 64
ResBlock down 128

ResBlock 128
ResBlock down 128

ResBlock 256
ResBlock down 256

ResBlock 256
Global Sum Pooling
FC layer → scalar

LSUN Church 64

3× 3 conv2d, 64
ResBlock down 64

ResBlock 64
ResBlock down 128

ResBlock 128
ResBlock 128

ResBlock down 128
ResBlock 256
ResBlock 256

ResBlock down 256
ResBlock 256

Global Sum Pooling
FC layer → scalar

CelebA HQ 256

3× 3 conv2d, 64
ResBlock down 64

ResBlock 64
ResBlock down 128

ResBlock 128
ResBlock down 128

ResBlock 128
ResBlock down 256

ResBlock 256
ResBlock down 256

ResBlock 256
ResBlock down 512

ResBlock 512
Global Sum Pooling
FC layer → scalar

datch [2019], we clip training gradients that are more than 3 standard deviations from the

2nd-order Adam parameters. Note that with such a small number of Langevin sampling

steps, the discrete Langevin sampling can be better viewed as an implicit generator model

rather than an approximation to the Langevin dynamics. We will discuss this issue in detail

in Chapter 4.

While persistent sampling using a sample replay buffer has little effect on CIFAR-10, we

found it to be useful on large images such as CelebA HQ 256. When we do not use persistent
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Table 4.10: Important hyper-parameters for training VAEBM. LR stands for learning rate,
BS stands for batch size.

Dataset LR BS Persistent # steps Step Size

CIFAR-10 w/o persistent chain 4e−5 32 No 10 8e−5
CIFAR-10 w/ persistent chain 4e−5 32 Yes 6 6e−5
CelebA 64 5e−5 32 No 10 5e−6
LSUN Church 64 4e−5 32 Yes 10 4e−6
CelebA HQ 256 4e−5 16 Yes 6 3e−6

sampling, we always initialize the LD chains with (ϵx, ϵz), sampled from a standard Gaussian.

When we use persistent sampling in training, we keep a sample replay buffer that only stores

samples of ϵz, while ϵx is always initialized from a standard Gaussian. The size of the replay

buffer is 10,000 for CIFAR-10 and LSUN Church 64, and 8,000 for CelebA HQ 256. At

every training iteration, we initialize the MCMC chains on ϵz by drawing ϵz from the replay

buffer with probability p and from standard Gaussian with probability 1− p. For CIFAR-10

and LSUN Church 64, we linearly increase p from 0 to 0.6 in 5,000 training iterations, and

for CelebA HQ 256, we linearly increase p from 0 to 0.6 in 3,000 training iterations. The

settings of Langevin dynamics are presented in Table 4.10.

We do not explicitly set the number of training iterations. Instead, we follow Du and

Mordatch [2019] to train the energy network until we cannot generate realistic samples

anymore. This happens when the model overfits the training data and hence energies of

negative samples are much larger than energies of training data. Typically, training takes

around 25,000 iterations (or 16 epochs) on CIFAR-10, 20,000 iterations (or 3 epochs) on

CelebA 64, 20,000 iterations (or 5 epochs) on LSUN Church 64, and 9,000 iterations (or 5

epochs) on CelebA HQ 256.

Test time sampling: After training the model, we generate samples for evaluation by

running Langevin dynamics with (ϵx, ϵz) initialized from standard Gaussian, regardless of

whether persistent sampling is used in training or not. We run slightly longer LD chains than
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training to obtain the best sample quality. In particular, our reported values are obtained

from running 16 steps of LD for CIFAR-10, 20 steps of LD for CelebA64 and LSUN Church

64, and 24 steps for CelebA HQ 256. The step sizes are the same as training step sizes.

Settings for Ablation Study

Here we present the details of ablation experiments. Throughout ablation experiments, we

use a smaller NVAE with 20 groups of latent variables trained on CIFAR-10. We use the

same network architectures for the energy network as in Table 4.9, with potentially different

normalization techniques discussed below. We spent significant efforts on improving each

method we compare against, and we report the settings that led to the best results.

WGAN initialized with NVAE decoder: We initialize the generator with the pre-

trained NVAE decoder, and the discriminator is initialized by a CIFAR-10 energy network

with random weights. We use spectral normalization and batch normalization in the dis-

criminator as we found them necessary for convergence. We update the discriminator using

the Adam optimizer with constant learning rate 5e−5, and update the generator using the

Adam optimizer with initial learning rate 5e−6 and cosine decay schedule. We train the

generator and discriminator for 40k iterations, and we reach convergence of sample quality

towards the end of training.

EBM on x, w/ or w/o initializing MCMC with NVAE samples: We train two

EBMs on data space similar to Du and Mordatch [2019], where for one of them, we use the

pre-trained NVAE to initialize the MCMC chains that draw samples during training. The

setting for training these two EBMs are the same except for the initialization of MCMC. We

use spectral normalization in the energy network and energy regularization in the training

objective as done in Du and Mordatch [2019] because we found these modifications to improve

performance. We train the energy function using the Adam optimizer with constant learning

rate 1e−4. We train for 100k iterations, and we reach convergence of sample quality towards
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the end of training. During training, we draw samples from the model following the MCMC

settings in Du and Mordatch [2019]. In particular, we use persistent sampling and sample

from the sample replay buffer with probability 0.95. We run 60 steps of Langevin dynamics

to generate negative samples and we clip gradients to have individual value magnitudes of

less than 0.01. We use a step size of 10 for each step of Langevin dynamics. For test time

sampling, we generate samples by running 150 steps of LD with the same settings as during

training.

VAEBM with DKL(pϕ(x)||pθ,ϕ(x)) loss: We use the same network structure for Eψ

as in VAEBM. We find persistent sampling significantly hurts the performance in this case,

possibly due to the fact that the decoder is updated and hence the initial samples from the

decoder change throughout training. Therefore, we do not use persistent training. We train

the energy function using the Adam optimizer with constant learning rate 5e−5. We draw

negative samples by running 10 steps of LD with step size 8e−5. We update the decoder

with the gradient in Equation 4.34 using the Adam optimizer with initial learning rate 5e−6

and cosine decay schedule. For test time sampling, we run 15 steps of LD with step size

5e−6.

4.5 Conclusion

This chapter introduces the framework of exponential tilting, which trains an energy-based

refinement over base generative models. We show that with little computational overhead,

we can improve the sample quality of a variety of generative models, including normalizing

flows and VAEs, by sampling from exponential tilted models. We show that our model can be

trained effectively in two stages with a maximum likelihood objective, and we can efficiently

sample it by running short Langevin dynamics chains. Experimental results demonstrate

strong generative performance on several image datasets.

In this joint model, the EBM and the base model form a symbiotic relationship:
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• The base model learns the overall mode structure, hence saves a lot of time for training

the EBM

• The base model provides re-parametrization for MCMC sampling from EBM, so that

the MCMC is performed on a distribution with smooth density, which significantly

facilitate both training and test-time sampling from the EBM.

• The EBM helps the base model to exclude non-data-like regions and significantly im-

proves the sample quality.
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CHAPTER 5

SHORT-RUN LANGEVIN DYNAMICS AS GENERATOR

MODELS

In this chapter, we investigate the role of Langevin dynamics in the maximum likelihood

training of Energy-based models. We try to understand this training procedure by replacing

Langevin dynamics with deterministic solutions of the associated gradient descent ODE.

Doing so allows us to study the density induced by the dynamics (if the dynamics are

invertible), and connect with GANs by treating the dynamics as generator models, the

initial values as latent variables, and the loss as optimizing a critic defined by the very same

energy that determines the generator through its gradient. We begin with motivating our

approach and introducing relative backgrounds. Then we will introduce our modifications

to the maximum likelihood training of EBMs and present experimental results.

The material of this chapter is based on Xiao et al. [2021b].

5.1 Motivation and Introduction

As introduced in Section 2.3, Energy-based models (EBMs) are likelihood-based generative

models that model the unnormalized data density by assigning low energy to high-probability

regions in the data space. Recently, by using a neural network as the energy functions,

deep EBMs [Xie et al., 2016, Du and Mordatch, 2019] are able to model complex data.

There are a variety of ways to train EBMs, including minimizing the KL-divergence [Du and

Mordatch, 2019] or general F-divergence [Yu et al., 2020a], score matching [Li et al., 2019b]

and contrastive estimation [Gao et al., 2020, Gutmann and Hyvärinen, 2012]. Among them,

the KL divergence minimization (equivalent to maximum likelihood estimation) is the most

widely used.

The maximum likelihood training of EBMs is introduced in Section 2.3.2. For con-
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venience, we briefly re-state the core idea here. To train an EBM of the form pθ(x) =

exp (−Eθ(x)) /Zθ, where Eθ(x) is the energy function with parameters θ and Zθ is the

normalizing constant, we can take the derivative of the negative log likelihood function

L(θ) = Ex∼pdata(x) [− log pθ(x)] w.r.t to the model parameter θ [Woodford, 2006]:

∂θL(θ) = Ex∼pdata(x) [∂θEθ (x)] − Ex∼pθ(x) [∂θEθ (x)] (5.1)

and minimize L(θ) by gradient descent. The second expectation in Equation 5.1 can be

empirically estimated by samples drawn from the model pθ(x) itself. However, sampling

from pθ(x) is intractable and samples are usually drawn using MCMC. A commonly used

MCMC algorithm is the Langevin dynamics (LD) [Neal, 1993]. Given an initial sample x0,

Langevin dynamics solves the SDE

dxt = −1

2
∇xEθ(xt)dt+ dwt, (5.2)

where wt is Brownian motion. The discretized version, using the simplest Euler approxi-

mation yields:

xt+1 = xt −
η

2
∇xEθ(xt) +

√
ηωt, (5.3)

where ωt ∼ N (0, I) and η is the step-size. Theoretically, we need to run the discretized LD

with infinitely many steps and diminishing step sizes to obtain true samples. However, in

practice, we usually run LD for finite number of steps with a fixed step size. After training,

samples are obtained by running the same Langevin dynamics, typically with the same

number of steps.
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Figure 5.1: Transition with K1 = 100 LD steps for training and varying K2 LD steps for
sampling. Figure taken from Nijkamp et al. [2019].

5.1.1 Alternative understanding of maximum likelihood training

Although the maximum likelihood training scheme is simple and intuitively appealing, we

might still not fully understand its mechanism. Since the convergence of MCMC is extremely

difficult when the energy function is complicated, we cannot easily overlook the gap between

running the LD in practice (usually called short-run LD) and truly obtaining samples from

pθ(x). Indeed, some interesting observations are made from training the EBMs through

maximum likelihood. Firstly, in practice, the noise scale of LD is usually much smaller than

the correct one in Equation 5.3, which makes the LD similar to gradient descent [Du and

Mordatch, 2019]. Secondly, unless the shape of the energy function is carefully modified

by introducing a base distribution as done in Xiao et al. [2020a], Nijkamp et al. [2022], LD

usually does not mix, i.e., samples obtained by running longer LD get trapped in different

local modes instead of traversing between modes. An example taken from Nijkamp et al.

[2019] is shown in Figure 5.1, where we observe that increasing the number of LD sampling

steps results in over-saturated samples.

Probably as a consequence, the initial points x0 contain information about the final

outcome. Therefore short-run LD is observed to be capable of reconstructing the data and

interpolating different samples. For example, Nijkamp et al. [2019] observe that by fixing

two noise vectors z1,x2 ∼ N (0, I), and initialize the LD with interpolations between z1,x2:

zρ = ρz1 +
√

1 − ρ2z2, ρ ∈ [0, 1], the resulting samples consist of a meaningful interpolation

between the samples generated by initializing LD with z1 and z2 (see Figure 5.2). Also,

in Nijkamp et al. [2019], the authors observe that any given image can be reconstructed by
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Figure 5.2: Transition of sequence of samples obtained from initializing the LD with inter-
polated noise zρ. The leftmost and rightmost images are samples from initializing with z1
and z2, respectively. Figure taken from Nijkamp et al. [2019].

optimizing the initial value z0 by back-propagating into the LD iterations.

Another interesting observation is that, sometimes, while we can obtain good samples by

running short-run LD, the density of the EBMs can be drastically different from the true data

densities (e.g., Figure 2 of Gao et al. [2021]). These observations suggest that running short-

run LD may be fundamentally different from obtaining samples from the EBMs. Therefore

the maximum likelihood explanation for the training procedure may be invalid.

Nijkamp et al. [2019] first study the intriguing properties of short-run LD. They conjecture

that the short-run LD behaves more like a generator or flow model. They consider pθ(x) to

be a generative model of the following form:

z ∼ p0(z); x = Mθ(z, u), (5.4)

where u denotes all the randomness in the short-run MCMC. For the K-step Langevin dy-

namics, Mθ can be considered a K-layer noise-injected residual network, z can be considered

latent variables, and p0 the prior distribution of z. Due to the non-convergence and non-

mixing of LD, x can be highly dependent on z, and z can be inferred from x. This is

completely different from the convergent MCMC, where x is independent of z. However,

they do not study pθ with an explicit formulation. In this chapter, we follow their work

to provide an alternative understanding of the maximum likelihood training of EBMs. In

particular, we replace the LD sampling with noise-free dynamics so that the output samples
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are produced by a deterministic transformation of the initial points. In this case, we regard

the dynamic as a generator model and the initial points as latent variables. By ensuring that

the generator is invertible, we can explicitly study the density of the distribution induced by

the sampling dynamics (where the initial points entirely determine the randomness). In ad-

dition, by treating the sampling dynamics as a generator model, we find that we can improve

the sample quality by adding the generator loss term from GANs to the original loss.

5.2 Related Work

The material of this chapter is closely related to earlier studies on the properties of ML

training EBMs with short-run non-convergent MCMC [Nijkamp et al., 2019, 2020], where

they illustrate through experiments that the short-run LD behaves more like a generator

model, and in particular Nijkamp et al. [2019] provide a moment matching framework for

explaining the mechanism behind the maximum likelihood training. In addition, Xie et al.

[2018, 2020] propose MCMC teaching, where a separate generator is trained to absorb the

process of LD sampling. This suggests that their method is based on the assumption that

LD used in practice can be represented as a generator model. Additionally, Han et al. [2019]

provides a probabilistic way to deal with EBM without MCMC. We take a further step from

them to explicitly study the properties of the generator models.

Since our noise-free sampling dynamics can yield an invertible gradient flow , our work is

related to the concept of generative gradient flows [Zhang et al., 2018, Huang et al., 2021a].

In addition, Song et al. [2021b] show that the stochastic dynamics of score based generative

models [Song and Ermon, 2019, Ho et al., 2020] are equivalent to specific deterministic ODE

flows [Chen et al., 2018a, Grathwohl et al., 2018]. However, such equivalence cannot be easily

established for Langevin diffusion. Pang et al. [2020] connects EBM and generator model,

but what they do is learning an EBM prior for the generator.

Finally, our work is related to previous work that connects GANs with EBMs [Che et al.,
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2020, Song et al., 2020b, Ansari et al., 2021] or invertible flows [Grover et al., 2018]. In

particular, Grover et al. [2018] use invertible structures, such as real-NVP [Dinh et al.,

2016], for the generator of GANs, but they focus on hybrid training with adversarial and

maximum likelihood objectives.

5.3 Noise-free Sampling Dynamics as Flow Models

In this section, we demonstrate how to explicitly obtain the density induced by the noise-free

sampling dynamics by enforcing invertibility. We start by replacing the Langevin dynamics

in Equation 5.1 with the noise-free gradient descent ODE:

x′(t) = −∇xEθ(x(t)), x(0) = x0, t ∈ [0, T ], (5.5)

which is guaranteed to produce an invertible map under very mild conditions on E, and we

can write the continuous flow [Chen et al., 2018a, Grathwohl et al., 2018]:

xT = GTθ (x0) = ODESolve(−∇xEθ(x(t)),x0, [0, T ]), (5.6)

where ODESolve(−∇xEθ(x(t)),x0, [0, T ]) is a black-box numerical ODE solver that solves

tne ODE with function −∇xEθ(x(t)) and initial value x0, from time 0 to T .

Since there is no noise term, given x0, the process can be represented by a deterministic

generator model with latent variable x0. We denote the model as GTθ (x0). We want to

emphasize that T is an important component of the generator model, and we should use

roughly the same T when sampling. Moreover, as GTθ (x0) is invertible, the likelihood along

the path can be obtained by instantaneous change of variables formula [Chen et al., 2018a],
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and the log likelihood of data x under the flow model can be computed by

log p(x) = log p(x0) +

∫ T

0
tr [∇xxEθ(x(t))] dt. (5.7)

As a special case, the forward Euler solver for this equation yields

xt+1 = xt −
η

2
∇xEθ(xt), t = 0, 1, · · · , K − 1, (5.8)

with initialization x0 from some fixed simple distribution p0 in Rd such as the standard

Gaussian. In particular, GTθ (x0) : Rd → Rd is a residual flow [Behrmann et al., 2019]:

xK = GTθ (x0) = (I − η

2
∇xEθ)

K(x0). (5.9)

GTθ (x0) is guaranteed to be invertible if Lip
(η
2∇xEθ)

)
< 1 [Behrmann et al., 2019]. This

holds as long as ∇xEθ has bounded Lipschitz constant and the step size η is sufficiently small.

However, it is still difficult to choose the step size that ensures invertibility, and therefore, we

generalize Gθ(x0) to be any numerical solution to the initial value ODE problem in Equation

5.5.

To summarize, we train the energy network Eθ by doing the gradient update in Equation

5.1 with negative samples obtained from Equation 5.6. After training, we can obtain new

samples by running Equation 5.6, and compute the likelihood of data point x by solving the

ODE in the reverse direction to find the corresponding initial point x0 and then apply 5.7.

The method discussed in this section is not computationally efficient. Note that for a

general neural ODE, the output y can be written as

y = ODESolve(fθ(x(t)),x, [0, T ]), (5.10)

where f is a neural network. The goal is to optimize fθ, and only the first-order derivative
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is needed to optimize θ. However, in our case, fθ = −∇xEθ, and hence we need to take

higher order derivative to optimize θ. This can be prohibitively slow in high dimensions. As

a result, we only strictly stick to the gradient flow formulation on 2-D toy data. On image

data, we simply remove the noise term in discretized Langevin dynamics in Equation 5.3.

5.4 Connection with W-GAN and the generator loss term

It is well known that the maximum likelihood training of EBMs is closely related to the

training of Wasserstein-GANs [Che et al., 2020], where the objective for the discriminator

D (assuming D is 1-Lipschitz) is

max
D

Ex∼pdata [D(x)] − Ex∼pG [D(x)] , (5.11)

where pG is the (implicit) distribution defined by the generator. The gradient of Equation

5.11 is (up to a sign) very similar to Equation 5.1 except that here the negative samples are

drawn from the generator, while in Equation 5.1, the negative samples are drawn from the

EBM itself. Note that the sign does not matter as we can model the negative energy instead.

Intuitively, W-GANs use the discriminator D to contrast true data and samples generated

by the generator G, while EBMs use the energy function E to contrast true data and samples

generated by E itself implicitly through MCMC. Therefore, the maximum likelihood training

of EBMs can be described as a self-adversarial game.

In W-GANs, after the discriminator is updated by optimizing 5.11, the generator G is

then updated by

max
G

Ex̃∼pG [D(x̃)] . (5.12)

In other words, the generator is trained by maximizing the discriminator’s output of fake

samples generated by G. Strictly speaking, there is no corresponding loss term in the training

160



of EBMs, as the sampling is done by MCMC rather than deterministic mapping. However, as

discussed in Section 5.3, in practice, the sampling process can be seen as a generator model

with initial points as latent variables. In this case, we actually have an explicit generator Gθ

defined in Equation 5.6, and therefore we can update the parameter of Gθ by the following

objective:

min
θ
Esg(θ)(Gθ(x0)), (5.13)

where x0 is the latent variables sampled from p0, and sg(·) is the stop gradient operation.

Here we stop the gradient of Eθ because we only want to differentiate through the generation

process. Note that the implicit generator is defined by an iterative process, and it is not

trivial to take the gradient of such a process. To do so, we unroll the iterative process by

storing the derivative of each step and propagating back from the last step to the first step.

Hence, we propose to add the extra update step for Gθ at each iteration so that we

are essentially training a W-GAN whose discriminator and generator share the same set of

parameters and conjecture that the adversarial training will improve the sample quality.

One modification is made for the implementation. Typically when training GANs, we

alternate the update of the parameters of the discriminator and the generator, and hence

two batches of samples are generated. This can be slow in our case, as drawing samples

requires iterative updates. Therefore, we use the same batch of samples to update Eθ and

Gθ, and since we only have one set of parameters θ, it is equivalent to optimizing the following

objective without alternating optimization as in GANs:

min
θ
Eθ(x) − Eθ(Gsg(θ)(x0)) + Esg(θ)(Gθ(x0)), x ∼ pD,x0 ∼ p0. (5.14)
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5.5 Experimental Results

In this section, we conduct experiments to verify our proposed methods and arguments in

section 5.3 and 5.4. Specifically, we train energy functions on 2d-toy data and image data by

replacing the MCMC sampling with deterministic dynamics. Throughout the experiments,

we initialize the dynamics with noise sampled from standard Gaussian distribution. We do

not use persistent sampling, as we want to interpret the model as a generator with fixed

prior. The deterministic dynamics can be simply defined by Equation 5.8, or more generally,

the path to solve the ODE as in Equation 5.6. In particular, we need to use the latter

method if we want to compute the density induced by the dynamics.

5.5.1 2D toy data

We use the Swiss roll and 9 Gaussian mixture grid as the true distributions, and our energy

function Eθ : R2 → R is a simple neural network with several fully connected layers. We

use the neural ODE formulation and solve the ODE in Equation 5.5 with the default Dor-

mand–Prince solver as in Chen et al. [2018a]. In Figure 5.3, we plot the samples obtained

from solving the ODE using Equation 5.6. As a comparison, we also plot the log density of

the ODE flow and the value of the negative energy function (which is the unnormalized log

density of the corresponding EBM) in the same figure. We observe that we can obtain good

samples, even though the densities of the EBMs are not close to the ground truth densities.

In contrast, the density functions induced by the ODE flow capture the densities the true

data distributions very well. We also train EBMs with valid MCMC sampling with noise

term and plot the density functions and generated samples in Figure 5.4. There we make a

similar observation that the densities of EBMs do not match the data distribution.

We also plot the normalized density of the EBMs and gradient flows in Figure 5.5, where

we observe that the spurious high-density region shown in the log density plot in Figure 5.3

disappears, and we still find that the density of the gradient flows captures the true density
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(a) Swiss roll

(b) Gaussian grid

Figure 5.3: For each toy dataset, column 1: samples from the true data distribution;
column 2: samples from the ODE flow; column 3: (unnormalized) log density of the
EBM by plotting the value of −Eθ(x); column 4: log density of the ODE flow computed
by Equation 5.7. The spurious connections between components will visually disappear if
we take exponential (see Figure 5.5). We plot log density because the sampling dynamics
directly use it.

(a) Swiss roll

(b) Gaussian grid

Figure 5.4: Results of EBMs trained and sampled from using noisy dynamics on toy data.
For each sub-figure, we plot the left: samples obtained from running Langevin dynamics,
middle: (unnormalized) log density of the EBM , and right: normalized density of the
EBM, where the normalization constant is estimated by numerical integration.
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(a) Swiss roll

(b) Gaussian grid

Figure 5.5: For each sub-figure, left: normalized density of the EBM, and right: density
of the gradient flow.

much better than that of the EBMs.

These observations prove that maximum likelihood training of EBMs is actually training

a gradient flow model. Since the density defined by the final energy function completely

fails to capture the true data density, arguments that running the sampling dynamics draws

samples from the EBM is certainly incorrect; instead, we show that the dynamic itself is the

generative model to sample from, as its density matches the shape of the true density.

In addition, we also train the ODE flows with the same formulation and structure using

the maximum likelihood objective (where the likelihood is defined in Equation 5.7 and com-

pare the obtained data likelihood with that of the flows trained by the EBM objective. For

the ODE flows trained by maximum likelihood, the test data log-likelihood (averaged over

10000 test samples) is -0.69 nats on Swiss roll and -1.47 nats on Gaussian grid. The test

data likelihood of the ODE flows trained by the EBM objective is -0.86 nats and -1.95 nats

on these two datasets, respectively. As expected, the flows directly trained by maximizing
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Table 5.1: FID scores on image datasets for different models

MNIST Fashion-MNIST CIFAR-10 CelebA
EBM w/ noisy dynamic 15.4 61.7 70.4 69.6
EBM w/ noise-free dynamic 11.7 50.1 61.6 56.6

+ Generator loss 7.7 40.6 47.9 34.8

data likelihood have higher test likelihood, but the flows trained by the EBM objective still

perform reasonably well.

5.5.2 Image Data

Experiments on toy data reveal that the maximum likelihood training of EBMs may actually

lead to training generator or flow models. If this is true, then the noise term used in

Langevin dynamics may be unnecessary or even harmful. We confirm this by studying the

sample quality on common image datasets, including MNIST, Fashion-MNIST, CIFAR-10,

and CelebA. For simplicity, our energy functions are simple convolutional nets instead of

more complex residual networks used in Du and Mordatch [2019], Xiao et al. [2021a], and

therefore we only compare relative performances.

We train energy functions using the gradient update in Equation 5.1, where the samples

are generated by either noisy or noise-free sampling dynamics. For noise-free dynamics, we

use the gradient descent formulation in Equation 5.8 instead of the neural ODE formulation

because we only want to study the effect of noise while keeping all other factors the same.

For noisy sampling dynamics, we reduce the noise scale as done in almost all other work,

otherwise, the training diverges quickly. We report the FID scores in Table 5.1. In Figure

5.6, 5.7 and 5.8, we present qualitative samples of EBMs with noisy sampling dynamics,

EBMs with noise-free dynamics, and EBMs with noise-free dynamics + generator update,

respectively. We observe that EBMs trained with noise-free dynamics indeed obtain better

sample quality on all datasets.

Besides, we plot the loss curve along with the training of models with noisy or noise-
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Figure 5.6: Samples from EBMs w/ noisy dynamics
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Figure 5.7: Samples from EBMs w/ noise-free dynamics
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Figure 5.8: Samples from EBMs w/ noise-free dynamics plus extra generator loss
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free dynamics on CIFAR-10 in Figure 5.9. We observe that for both models, the losses

oscillate around zero, as observed in Nijkamp et al. [2020]. However, the model trained with

noisy dynamics diverges after 20000 iterations, while the training of model with noise-free

dynamics is much more stable. In addition, we observe that adding the extra generator loss,

as discussed in Section 5.4 does not affect the training stability. In contrast, training EBMs

with noisy sampling dynamics may still diverge during training. These results suggest that

the noise term in sampling dynamics may have negative effects, which further supports the

argument that we should treat the model as a generator defined by the gradient of the energy

instead of an EBM.

Treating the noise-free dynamics as generator models, we further apply the additional

adversarial loss term for the W-GAN generator update. In particular, we train the model

with loss in Equation 5.14. We report the FID in the last line of Table 5.1, where we find

the generator update significantly improves the sample quality. This experiment shows that

the noise-free dynamics is indeed a generator, and we can use it to train GANs.

5.5.3 Experimental settings

In this section, we introduce detailed settings of our experiments.

2D toy data

On 2D toy data, we use a 5-layer fully connected networks with 256 hidden units and swish

activation function. We train our models with Adam optimizer, with constant learning rate

1e− 3. The models are trained for 3000 iterations with batch size 800.

We draw negative samples by solving the ODE in 5.6. To do so, we use the solver

implemented by Chen et al. [2018a]. We set the initial value to random samples from 2-d

standard Gaussian distribution. We use the default dopri5 solver, T ∈ [0, 0.2], and numerical

error tolerance tolerance 1e−5. After training, samples are drawn by solving the same neural
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(a) EBMs w/ noisy dynamics
(b) EBMs w/ noisy dynamics, first 20000 itera-
tions

(c) EBMs w/ noise-free dynamics
(d) EBMs w/ noise-free dynamics + generator
loss

Figure 5.9: Plots of loss curves on CIFAR-10 dataset. (a): When sampling using the
noisy MCMC, the training diverges after 20000 iterations. (b): For better visualization,
we plot the loss curve for the first 20000 iterations. (c): When using noise-free dynamics,
the training is more stable. (d): With the additional generator loss, although we see some
jumps on the loss curve, the training is overall stable.
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MNIST CIFAR-10 CelebA

3 × 3 Convnf Stride 1 3 × 3 Convnf Stride 1 3 × 3 Convnf Stride 1
4 × 4 Conv2×nf Stride 2 4 × 4 Conv2×nf Stride 2 4 × 4 Conv2×nf Stride 2
4 × 4 Conv2×nf Stride 2 4 × 4 Conv4×nf Stride 2 4 × 4 Conv4×nf Stride 2
4 × 4 Conv2×nf Stride 2 4 × 4 Conv8×nf Stride 2 4 × 4 Conv8×nf Stride 2

Faltten, FC layer to scalar Faltten, FC layer to scalar 4 × 4 Conv16×nf Stride 2
Faltten, FC layer to scalar

Table 5.2: Network structures for different datasets. nf means number of filters. For MNIST,
Fashion MNIST and CelebA, nf = 32; for CIFAR-10, nf = 64. Swish activation is applied
after each convolutional layer.

ODE.

Image data

We resize MNIST and Fashion-MNIST to 32 × 32. The network structures are presented in

Table 5.2. We train all models with Adam optimizer with learning rate 5e − 4 and batch

size 64. As we mention in the main text, the training of EBMs with noisy dynamics is

unstable and it will diverge after certain number of iterations. This is also observed in Du

and Mordatch [2019] and Xiao et al. [2021a]. Therefore, we follow their setting to train the

EBMs until divergence. For EBMs trained with noise-free dynamics, we found the training

to be more stable. We set the number of training iterations similar to that of EBMs with

noisy dynamics. In particular, we train 8000 iterations for MNIST and Fashion-MNIST,

40000 iterations for CIFAR-10, and 30000 iterations for CelebA. To draw negative samples,

we set the step size to be 0.1 and the number of steps to be 40 for MNIST/Fashion-MNIST

and 60 for CIFAR-10 and CelebA. For the noisy sampling dynamics, we set the noise scale

to be 0.1.

For the extra GAN loss, we need to store the gradient while running the gradient descent

steps in Equation 5.8. This can be done by setting the create graph option when computing

the gradient in PyTorch’s auto differential package [Paszke et al., 2019].
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5.6 Conclusion

In this chapter, we provide new insights to understand the maximum likelihood training

of EBMs. We believe that instead of training EBMs, the maximum likelihood objective

actually trains generator models through a self-adversarial mechanism. The generator model

is defined implicitly by the gradient of the energy network, and we study the property of

the generator model by removing the noise in the MCMC sampling dynamics. We conduct

experiments to justify our thoughts and make the following observations:

• On toy data, the density function induced by the invertible noise-free dynamics is

close to the shape of the true data density, while the density of the EBM with the

corresponding energy function fails to capture the true density.

• On image datasets, we observe that removing the noise in the LD improves sample

quality and training stability.

• The sample quality can be further improved by introducing the generator update dis-

cussed in section 5.4, i.e., making the self-adversarial game into an adversarial game.

These observations together suggest that the mechanism behind the ML training of EBMs is

to train a generator or gradient flow model, and we can benefit from removing the noise in the

sampling dynamics. As a result, given the difficulty of running MCMC in high dimensions,

we should study the convergence of MCMC sampling in high dimensions more carefully and

probably focus more on training techniques without sampling, if our goal is to train valid

energy-based models.
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CHAPTER 6

DENOISING DIFFUSION GANS FOR ACCELERATING

SAMPLING FROM DENOISING DIFFUSION MODELS

This chapter proposes a model that accelerates the sampling from denoising diffusion models.

Specifically, we propose denoising diffusion GAN (DDGAN), which uses conditional GANs

to model the denoising distribution in the reverse process of denoising diffusion models. We

will begin with motivating our approach and introducing related work. Then we will give a

detailed description of our method and present experimental results.

The material of this chapter is based on Xiao et al. [2022].

6.1 Motivation and Introduction

As introduced in Section 2.4, denoising diffusion models [Sohl-Dickstein et al., 2015, Ho et al.,

2020] are powerful generative models with many successful applications. Diffusion models

define a forward diffusion process that maps data to noise by gradually perturbing the

input data. Data generation is achieved using a parameterized reverse process that performs

iterative denoising, starting from random noise. They can also be viewed as VAEs with fixed

dimensions at all layers [Ho et al., 2020]. Diffusion models demonstrate surprisingly good

results in sample quality, beating GANs in image generation [Dhariwal and Nichol, 2021, Ho

et al., 2021]. They also demonstrate good mode coverage, indicated by high test likelihood

[Song et al., 2021a, Kingma et al., 2021, Huang et al., 2021b]. However, one major drawback

of denoising diffusion models is that sampling from them is very slow due to the iterative

sampling process. Typically it takes more than 1000 function evaluations to sample from

denoising diffusion models, making them difficult to be used in applications that require

real-time generation.

Moreover, as discussed in Section 2.6, every deep generative model has its own limitations.
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Importantly, we note that there is not a single generative model that can simultaneously excel

at the following three criteria:

• Sample quality

• Sample diversity or mode coverage

• Sampling speed

We describe the trade-off between different types of models with the term generative learning

trilemma, as shown in Figure 6.1. For example, GANs are fast to sample from and have high

sample quality, but they are known to suffer from mode collapse. VAEs and normalizing

flows are easy to sample from and tend to cover all the modes, but they cannot generate

high-quality samples. Denoising diffusion models are excellent in both sample quality and

diversity, but they are extremely slow to sample from.

Figure 6.1: Generative learning trilemma.
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We want to design a generative model that has a good balance between these three

criteria. Previously, there have been many attempts to improve VAEs and normalizing flows

[Vahdat and Kautz, 2020, Child, 2021, Kingma and Dhariwal, 2018], but it is observed that

even the best VAEs and flows with huge model sizes still cannot generate samples with

quality competitive with GANs. Resolving the mode collapse of GANs is also tricky, as this

is a fundamental issue of adversarial training. Previous approaches [Srivastava et al., 2017,

Dieng et al., 2019] only partially alleviate the issue, and possibly at the cost of reduced sample

quality. As a result, we found the direction of accelerating the sampling from denoising

diffusion models to be new and promising for tackling the generative learning trilemma.

Some recent papers propose methods that accelerate the sampling from denoising diffu-

sion models, and they will be discussed in 6.2. They still largely follow the same formulations

of denoising diffusion models and can reduce the sampling iterations to around 100 steps.

Further reducing the number of sampling iterations will result in significant degradation of

sample quality. However, a 100-step sampling scheme still takes a lot of time and is imprac-

tical for real-time applications. Our goal is to significantly speed-up sampling from denoising

diffusion models. In other words, we want to generate high-quality samples in a few steps.

We carefully investigate the slow sampling issue of denoising diffusion models, and we

note that diffusion models commonly assume that the denoising distribution can be approx-

imated by Gaussian distributions. As discussed in Section 2.4.1, the denoising distribution

is parameterized by

pθ (xt−1|xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) , (6.1)

and the training goal is to let pθ (xt−1|xt) match the true denoising distribution q(xt−1|xt).

While the true denoising distribution is unknown (otherwise, we can directly use it to denoise

samples), it is known that for continuous diffusion (in the limit of small step size), the

reversal of the diffusion process has the identical functional form as the forward process
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[Feller, 1949]. Since in the forward process, q(xt|xt−1) is a Gaussian distribution, if the step

size is infinitesimally small, the true denoising distribution q(xt−1|xt) is also a Gaussian. In

this case, we can parameterize the denoising distribution with a Gaussian as in Equation

6.1. As a result, previous denoising diffusion models use a very small step size (hence a very

large number of steps) to ensure that the true denoising distribution is close to a Gaussian.

If we want to significantly reduce the number of sampling steps, we need to know what

the true denoising distribution looks like when the denoising step size is large. Intuitively,

given a noisy observation xt, if we want to denoise for a small step and obtain xt−1, the

distribution q(xt−1|xt) has a single mode as the condition xt contains most of the information

about xt−1. However, if we denoise xt for a large step, there might be multiple plausible

xt−1 and hence q(xt−1|xt) will be a multi-modal distribution which cannot be approximated

by a Gaussian. The difference between small and large step sizes is illustrated in Figure 6.2.

Figure 6.2: Comparison between large and small denoising step sizes. Top: when the step
size is small, the true denoising distribution is single modal and can be approximated with
a Gaussian. Bottom: when the step size is large, the true denoising distribution is multi-
modal and cannot be approximated by a Gaussian.

We present a concrete example of 1-d toy data in Figure 6.3, where we plot the true

denoising distribution with different step sizes. Note that although in general we cannot
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compute the true denoising distribution in closed form, in 1-d we can compute

q(xt−1|xt) =

∫
x0

q(xt−1|xt,x0)q(x0)dx0

with numerical integration, where q(xt−1|xt,x0) is the Gaussian posterior in Equation 2.50.

We observe that the true denoising distribution becomes more complex and multimodal as

the step size increases.

Figure 6.3: Top: The evolution of 1D data distribution q(x0) through the diffusion process.
The distribution of x0 is a Gaussian mixture. Bottom: The visualization of the true
denoising distribution for varying step sizes conditioned on a fixed x5. The true denoising
distribution for a small step size (i.e., q(x4|x5 = X)) is close to a Gaussian distribution.
However, it becomes more complex and multimodal as the step size increases.

Inspired by this observation, we propose to parameterize the denoising distribution with

an expressive multimodal distribution to enable denoising for large steps. We ensure the

denoising distribution to be expressive by parameterizing it with a deep generative model

instead of a simple Gaussian distribution, and we ensure the denoising distribution to be

multimodal by using latent variables, which lead to diverse output given the same condition

xt. In particular, we introduce a novel generative model, termed as denoising diffusion GAN,

in which the denoising distributions are modeled with conditional GANs. In a denoising

diffusion GAN, the generator tries to generate a sample of denoised xt−1 conditioned on xt,
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and the discriminator tries to distinguish between generated xt−1 and real xt−1 sampled

from the forward diffusion process. In image generation, we observe that our model obtains

sample quality and mode coverage competitive with diffusion models while taking only as

few as two denoising steps, achieving about 2000× speed-up in sampling compared to the

predictor-corrector sampling by Song et al. [2021b] on CIFAR-10.

One potential drawback of our model is that it introduces adversarial training, which may

cause mode collapse and training instability issues. However, we observe that our denoising

diffusion GAN does not suffer from mode collapse, and the training is stable. Compared to

traditional GANs, we show that our model significantly outperforms state-of-the-art GANs

in sample diversity while being competitive in sample fidelity. There are two possible expla-

nations. Firstly, our model breaks the generation task of GANs into several easier conditional

generation tasks, where each task is to perform a single denoising step. It is known that

conditional GANs are easier to train and suffer less from mode collapse than unconditional

GANs. For example, all GANs trained on ImageNet dataset require label conditioning [Brock

et al., 2018]. Our method provides a natural way to formulate the generation problem with

several conditional sub-problems, even when label information is unavailable. Therefore,

from the perspective of GAN training, our method can be seen as a self-supervised con-

ditional GAN. Secondly, one important reason of mode collapse and training instability is

the overfitting of the discriminator, where the discriminator can distinguish between real

and fake samples too easily. In our model, the discriminator needs to distinguish between

real and fake xt−1, which is noisy except for the last denoising step. The diffusion process

smooths the data distribution, and it is more difficult to judge noisy samples. Therefore our

method provides a natural regularization to the discriminator.

In summary, we make the following contributions:

• We attribute the slow sampling of diffusion models to the Gaussian assumption in the

denoising distribution and propose to employ complex, multimodal denoising distribu-
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tions.

• We propose denoising diffusion GANs, a diffusion model whose reverse process is pa-

rameterized by conditional GANs.

• Through careful evaluations, we demonstrate that denoising diffusion GANs achieve

several orders of magnitude speed-up compared to current diffusion models for both

image generation and editing. We show that our model overcomes the deep generative

learning trilemma to a large extent, making diffusion models for the first time applicable

to interactive, real-world applications at a low computational cost.

6.2 Related Work

Diffusion-based models [Sohl-Dickstein et al., 2015, Ho et al., 2020] learn the finite-time

reversal of a diffusion process, sharing the idea of learning transition operators of Markov

chains with Goyal et al. [2017], Alain et al. [2016], Bordes et al. [2017]. Since then, there

have been several improvements and alternatives to diffusion models. Song et al. [2021b]

generalize diffusion processes to continuous time, and provide a unified view of diffusion

models and denoising score matching [Vincent, 2011, Song and Ermon, 2019]. Jolicoeur-

Martineau et al. [2021b] add an auxiliary adversarial loss to the main objective. This is

fundamentally different from ours, as their auxiliary adversarial loss only acts as an image

enhancer, and they do not use latent variables; therefore, the denoising distribution is still

a unimodal Gaussian.

One major drawback of diffusion or score-based models is the slow sampling speed due

to a large number of iterative sampling steps. To alleviate this issue, multiple methods have

been proposed. Luhman and Luhman [2021] use knowledge distillation to distill a multi-step

denoising process into a single step. After training the denoising diffusion model, they gener-

ate a large number of samples that serve as their training set and train a network to predict
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the generated sample given the initial noise input. However, training their method requires

generating samples, which can be time-consuming. Moreover, the iterative sampling process

is a random process, and it is unclear whether it can be represented by a deterministic trans-

formation of the initial noise. Their method has a significant degradation in sample quality.

[San-Roman et al., 2021] propose a learning scheme that can step-by-step adjust the noise

scheduling parameters for any given number of steps. However, the objective for the adjust-

ment is data likelihood, and it turns out that such a method cannot generate high quality

samples. Song et al. [2020a] generalizes the forward diffusion process of denoising diffusion

models, which is Markovian, to non-Markovian ones. They show that resulting variational

training objectives have a shared surrogate objective, which is exactly the objective used

to train original denoising diffusion models. Therefore, they can use pre-trained denoising

diffusion models and sampling with the corresponding reverse process associated with the

non-Markovian diffusion process, and they show that this results in significant speed-ups.

Similar ideas are used in [Kong and Ping, 2021]. Jolicoeur-Martineau et al. [2021a] propose

to use better SDE solvers that solve the reverse SDE faster than the naive Euler solver for

continuous-time diffusion models. LSGM [Vahdat et al., 2021] formulates a diffusion model

in the latent space of a VAE, and the VAE and the diffusion model are trained jointly with

ELBO objective. LSGM requires fewer sampling steps than denoising diffusion models on

the data space. This is because if the data marginal q(xt) is Gaussian, the true denoising

distribution q(xt−1|xt) is also a Gaussian distribution. The encoder of the VAE brings the

data distribution q(x0) and consequently q(xt) closer to Gaussian. However, the problem of

transforming the data to Gaussian itself is challenging, and VAE encoders cannot solve it

perfectly. As a result, LSGM still requires tens to hundreds of steps on complex datasets.

Among variants of diffusion models, Gao et al. [2021] have the closest connection with

our method. They propose to model the single-step denoising distribution by a conditional

energy-based model (EBM), sharing the high-level idea of using expressive denoising distri-
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butions with us. However, they motivate their method from the perspective of facilitating the

training of EBMs. More importantly, although only a few denoising steps are needed, expen-

sive MCMC has to be used to sample from each denoising step, making the sampling process

slow with ∼180 network evaluations. ImageBART [Esser et al., 2021a] explores modeling the

denoising distribution of a diffusion process on discrete latent space with an auto-regressive

model per step in a few denoising steps. However, the auto-regressive structure of their

denoising distribution still makes sampling slow.

Since our model is trained with adversarial loss, our work is related to recent advances

in improving the sample quality and diversity of GANs, including data augmentation [Zhao

et al., 2020, Karras et al., 2020a], consistency regularization [Zhang et al., 2019, Zhao et al.,

2021] and entropy regularization [Dieng et al., 2019]. In addition, the idea of training gen-

erative models with smoothed distributions is also discussed in Meng et al. [2021a] for auto-

regressive models.

6.3 Denoising Diffusion GANs

Our goal is to reduce the number of denoising diffusion steps T required in the reverse process

of diffusion models. Inspired by the discussion in Section 6.1, we propose to model the

denoising distribution with an expressive multimodal distribution. Since conditional GANs

have been shown to model complex conditional distributions in the image domain [Mirza

and Osindero, 2014, Ledig et al., 2017, Isola et al., 2017], we adopt them to approximate the

true denoising distribution q(xt−1|xt).

Specifically, our forward diffusion is set up similarly to the diffusion models in Equation

2.44 with the main assumption that T is assumed to be small (T ≤ 8) and each diffusion

step has larger βt. Our training is formulated by matching the conditional GAN generator

pθ(xt−1|xt) and q(xt−1|xt) using an adversarial loss that minimizes a divergence Dadv per
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denoising step:

min
θ

∑
t≥1

Eq(xt) [Dadv(q(xt−1|xt)∥pθ(xt−1|xt))] , (6.2)

where Dadv can be Wasserstein distance, Jenson-Shannon divergence, or f-divergence de-

pending on the adversarial training setup [Arjovsky et al., 2017, Goodfellow et al., 2014,

Nowozin et al., 2016]. In our model, we rely on non-saturating GANs [Goodfellow et al.,

2014] that are widely used in successful GAN frameworks such as StyleGANs [Karras et al.,

2019, 2020b]. In this case, Dadv takes a special instance of f-divergence called softened re-

verse KL [Shannon et al., 2020], which is different from the forward KL divergence used in

the original denoising diffusion model training in Equation 2.54.

To set up the adversarial training, we denote the time-dependent discriminator network

as Dϕ(xt−1,xt, t) : RN × RN × R → [0, 1], with parameters ϕ. It takes the N -dimensional

xt−1 and xt as inputs, and decides whether xt−1 is a plausible denoised version of xt. The

discriminator is trained by:

min
ϕ

∑
t≥1

Eq(xt)
[
Eq(xt−1|xt)[−log(Dϕ(xt−1,xt, t))] + Epθ(xt−1|xt)[−log(1−Dϕ(xt−1,xt, t))]

]
,

(6.3)

where fake samples from pθ(xt−1|xt) are contrasted against real samples from q(xt−1|xt).

The first expectation requires sampling from q(xt−1|xt) which is unknown. However, we

use the identity q(xt,xt−1) =
∫
dx0q(x0)q(xt,xt−1|x0) =

∫
dx0q(x0)q(xt−1|x0)q(xt|xt−1)

to rewrite the first expectation in Equation 6.3 as:

Eq(xt)q(xt−1|xt)
[
− log

(
Dϕ (xt−1,xt, t)

)]
= Eq(x0)q(xt−1|x0)q(xt|xt−1)

[
− log

(
Dϕ (xt−1,xt, t)

)]
(6.4)
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Given the discriminator, we train the generator by

max
θ

∑
t≥1

Eq(xt)Epθ(xt−1|xt)[log(Dϕ(xt−1,xt, t))], (6.5)

which updates the generator with the non-saturating GAN objective.

It is noteworthy that when we have only 1 time step, our model corresponds to training

an unconditional GAN, as the conditioning x1 is a white noise and contains no information

about x0.

6.3.1 Parameterizing the Implicit Denoising Model

Instead of directly predicting xt−1 in the denoising step, diffusion models [Ho et al., 2020]

can be interpreted as parameterizing the denoising model by

pθ(xt−1|xt) := q(xt−1|xt,x0=fθ(xt, t)), (6.6)

in which first x0 is predicted using the denoising model fθ(xt, t), and then, xt−1 is sampled

using the posterior distribution q(xt−1|xt,x0) given xt and the predicted x0. The distribu-

tion q(xt−1|x0,xt) is intuitively the distribution over xt−1 when denoising from xt towards

x0, and it always has a Gaussian form for the diffusion process in Equation 2.44, indepen-

dent of the step size and complexity of the data distribution. The form of q(xt−1|x0,xt) is

introduced in Equation 2.50.

The interpretation of sampling step as x0 prediction followed by posterior sampling is

not obvious from the original description in Ho et al. [2020], but it is discussed by Song

et al. [2020a]. Here we provide arguments to make it clear. We want to show that parame-

terization of the denoising distribution for current diffusion models such as Ho et al. [2020]

can be interpreted as pθ(xt−1|xt) := q(xt−1|xt,x0=fθ(xt, t)). Ho et al. [2020] train a noise

prediction network ϵθ(xt, t) which predicts the noise that perturbs data x0 to xt, and a
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sample from pθ(xt−1|xt) is obtained as (see Algorithm 2 of Ho et al. [2020])

xt−1 =
1

√
αt

(
xt −

1 − αt√
1 − ᾱt

ϵθ (xt, t)

)
+ σtz, (6.7)

where z ∼ N (0, I) except for the last denoising step where z = 0, and σt =

√
β̃t is the

standard deviation of the Gaussian posterior distribution in Equation 2.51.

Firstly, notice that predicting the perturbation noise ϵθ(xt, t) is equivalent to predicting

x0. We know that xt is generated by adding ϵ ∼ N (0, I) noise as:

xt =
√
ᾱtx0 +

√
1 − ᾱtϵ, (6.8)

Hence, after predicting the noise with ϵθ(xt, t) we can obtain a prediction of x0 using:

x0 =
1√
ᾱt

(
xt −

√
1 − ᾱtϵθ(xt, t)

)
. (6.9)

Next, we can plug the expression for x0 in Equation 6.9 into the mean of the Gaussian

posterior distribution in Equation 2.51, and we have

µ̃t(xt,x0) = µ̃t

(
xt,

1√
ᾱt

(
xt −

√
1 − ᾱtϵθ(xt, t)

))
(6.10)

=
1

√
αt

(
xt −

1 − αt√
1 − ᾱt

ϵθ(xt, t)

)
(6.11)

after simplifications. Comparing this with Equation 6.7, we observe that Equation 6.7 simply

corresponds to sampling from the Gaussian posterior distribution. Therefore, although Ho

et al. [2020] use an alternative re-parameterization, their denoising distribution can still

be equivalently interpreted as pθ(xt−1|xt) := q(xt−1|xt,x0 = fθ(xt, t)), i.e, first predicting

x0 using the time-dependent denoising model fθ(xt, t), and then sampling xt−1 using the

posterior distribution q(xt−1|xt,x0) given xt and the predicted x0. Hence we show that the
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parameterization of Ho et al. [2020] is equivalent to what we describe.

We follow the parameterization of Ho et al. [2020] and define pθ(xt−1|xt) by:

pθ(xt−1|xt) :=

∫
pθ(x0|xt)q(xt−1|xt,x0)dx0 =

∫
p(z)q(xt−1|xt,x0=Gθ(xt, z, t))dz,

(6.12)

where pθ(x0|xt) is the implicit distribution imposed by the GAN generator Gθ(xt, z, t) :

RN × RL × R → RN that outputs x0 given xt and an L-dimensional latent variable z ∼

p(z) := N (z;0, I).

Our parameterization has several advantages: Firstly, our pθ(xt−1|xt) is formulated sim-

ilar to DDPM [Ho et al., 2020]. Thus, we can borrow some inductive biases such as the

network structure design from DDPM. The main difference is that, in DDPM, x0 is pre-

dicted as a deterministic mapping of xt, while in our case, x0 is produced by the generator

with random latent variable z. This is the key difference that allows our denoising distribu-

tion pθ(xt−1|xt) to become multimodal and complex in contrast to the unimodal denoising

model in DDPM. Secondly, note that for different t’s, xt has different levels of perturbation,

and hence using a single network to predict xt−1 directly at different t may be difficult.

However, in our case the generator only needs to predict unperturbed x0 and then add back

perturbation using q(xt−1|xt,x0). Figure 6.4 visualizes our training pipeline.

We present pseudo codes of our training pipeline in Algorithm 1 and sampling process in

Algorithm 2.

6.3.2 Network Design

Network architecture is a critical component in the design of denoising diffusion GAN. Pre-

vious conditional GANs typically use a decoder structure for the generator, where the con-

ditioning information (such as label) is added to the network with embedding. In our case,

the condition xt is very important as the desired output of the generator is a less noisy

185



Algorithm 1 A training iteration of denoising diffusion GAN

Require: Number of time steps T , training sample x, time-dependent discriminator Dϕ,
time dependent generator Gθ.

1: Sample t uniformly from {0, · · · , T − 1}.
2: Using x as initial data, sample xt and xt+1 from the forward diffusion process with

Equation 2.46 and Equation 2.44.
3: Sample z ∼ N (0, I), and generate x′0 = Gθ(xt+1, z, t).
4: Sample x′t using xt+1 and x′0 from the Gaussian posterior distribution in Equation 2.50.
5: Update the discriminator by minimizing

− log
(
Dϕ (xt,xt+1, t)

)
− log

(
1 −Dϕ

(
x′t,xt+1, t

))
w.r.t ϕ.

6: Update the generator by maximizing

log
(
Dϕ
(
x′t,xt+1, t

))
w.r.t θ.

Algorithm 2 Sampling from denoising diffusion GAN

Require: Number of time steps T , time dependent generator Gθ.
1: Sample xT ∼ N (0, I).
2: for t = T − 1, · · · , 0 do
3: Sample z ∼ N (0, I), and generate x′0 = Gθ(xt+1, z, t).
4: Sample x′t using xt+1 and x′0 from the Gaussian posterior distribution in Equation

2.50.
5: x′0 is an sample from the denoising diffusion GAN.
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Figure 6.4: The training process of denoising diffusion GAN.

version of xt (after the posterior sampling). Therefore, we cannot embed xt as conditioning,

as we need the value of each pixel of xt rather than a vector of abstract representation to

perform denoising. Therefore, we adopt a U-net structure for the generator, similar to the

noise prediction network in Ho et al. [2020]. In our generator, the condition xt is the input

to the network. With this design, the initial layer input to the generator is no longer the

noise vector z, so we borrow the idea of StyleGAN, whose input to the generator is a shared

constant tensor, to inject z to the network. StyleGAN is introduced in Section 2.5.3. Simply

speaking, StyleGAN transforms the noise vector z with fully connected layers and uses the

output to control the per-channel shift and scale parameters of normalization layers. We

adopt the same idea and design the adaptive group normalization module, which controls

the shift and scale parameters of the group normalization [Wu and He, 2018] module with

transformations of z. Group normalization divides the channels into groups, where each

group consists of a fixed number of consecutive channels and computes within each group

the mean and variance for normalization. In our case, given an input tensor, w ∈ RM×N×C ,
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the adaptive group normalization module outputs a normalized tensor w̃ ∈ RM×N×C in the

following way. Firstly, the latent variable z is transformed to shift and scale parameters for

each channel using fully connected layers µ(z) ∈ RC and σ(z) ∈ RC , and then the grouped

normalized tensor w̄ = GN(w) is transformed by

w̃ = µ(z) + σ(z)w̄ (6.13)

to obtain w̃. The time conditioning to the generator is enforced by time embedding tech-

niques similar to Ho et al. [2020].

Our discriminator needs to discriminate between real and fake xt−1 conditioned on xt.

To do so, we concatenate xt−1 and xt in the channel dimension, and the resulting concate-

nated tensor serves as the input to the discriminator. The discriminator has a common

convolutional structure consisting of multiple ResNet blocks. The time conditioning to the

generator is enforced by the same time embedding as the generator.

6.3.3 Diffusion Process

Since we are using a very small number of diffusion steps, it is important to choose the

diffusion process and allocate each step in the process. In order to compute βt per step, we

use the discretization of the continuous-time extension of the process described in Equation

2.44, which is called the Variance Preserving (VP) SDE by Song et al. [2021b]. We compute

βt based on the continuous-time diffusion model formulation, as it allows us to ensure that

the variance schedule stays the same independent of the number of diffusion steps. Let’s

define the normalized time variable by t′ := t
T which normalizes t to [0, 1]. The variance

function of VP SDE is given by

σ2(t′) = 1 − e−βmint
′−0.5(βmax−βmin)t

′2
, (6.14)
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with the constants βmax = 20 and βmin = 0.1. Recall that sampling from tth step in the

forward diffusion process can be done with q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I). We compute

βt by solving 1 − ᾱt = σ2( tT ):

βt = 1 − αt = 1 − ᾱt
ᾱt−1

= 1 −
1 − σ2( tT )

1 − σ2( t−1
T )

= 1 − e
−βmin(

1
T )−0.5(βmax−βmin)

2t−1
T2 (6.15)

6.4 Experimental Results

This section evaluates our proposed denoising diffusion GAN for the image synthesis problem.

First, we will present our main results of how our method overcomes the generative learning

trilemma on CIFAR-10. Then we will discuss ablation studies to better understand our

method, as well as additional results on mode coverage and training stability. Results on

high-resolution images and stroke-based generation will also be provided.

6.4.1 Overcoming the Generative Learning Trilemma

One major highlight of our model is that it excels at all three criteria in the generative

learning trilemma. Here, we carefully evaluate our model’s performances on sample fidelity,

sample diversity, and sampling time and benchmark it against a comprehensive list of models

on the CIFAR-10 dataset.

Evaluation criteria: We adopt the commonly used Fréchet inception distance (FID)

[Heusel et al., 2017] and Inception Score (IS) [Salimans et al., 2016] for evaluating sample

fidelity. For sample diversity, we use the improved recall score from Kynkäänniemi et al.

[2019], which is an improved version of the original precision and recall metric proposed by

Sajjadi et al. [2018]. It is shown that an improved recall score reflects how the variation

in the generated samples matches that in the training set [Kynkäänniemi et al., 2019]. For

sampling time, we use the number of function evaluations (NFE) and the clock time when

generating a batch of 100 images on a V100 GPU.
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Results: We present our quantitative results in Table 6.1. We observe that our sample

quality is competitive among the best diffusion models and GANs. Although some variants of

diffusion models obtain better IS and FID, they require a large number of function evaluations

to generate samples (while we use only 4 denoising steps). For example, our sampling time is

about 2000× faster than the predictor-corrector sampling by Song et al. [2021b] and ∼20×

faster than FastDDPM [Kong and Ping, 2021]. Note that diffusion models can produce

samples in fewer steps while trading off the sample quality. To better benchmark our method

against existing diffusion models, we plot the FID score versus the sampling time of diffusion

models by varying the number of denoising steps (or the error tolerance for continuous-time

models) in Figure 6.6. The figure clearly shows the advantage of our model compared to

previous diffusion models. In particular, we achieve a nearly 40× speed-up over the fastest

denoising diffusion models while maintaining similar sample quality.

When comparing our model to GANs, we observe that only StyleGAN2 with adaptive

data augmentation has a slightly better sample quality than ours. However, from Table

6.1, we see that GANs have limited sample diversity, as their recall scores are below 0.5.

In contrast, our model obtains a significantly better recall score, even higher than several

advanced likelihood-based models, and is competitive among diffusion models. We show

qualitative samples of CIFAR-10 in Figure 6.7.

In summary, our model simultaneously excels at sample quality, sample diversity, and

sampling speed and tackles the generative learning trilemma to a large extent. We visualize

our model’s position in the trilemma in Figure 6.5.

6.4.2 Ablation Studies

Here, we provide additional insights into our model by performing ablation studies.

Number of denoising steps: The number of denoising steps (T ) is an important

hyper-parameter of our model. In the first part of Table 6.2, we study the effect of using a
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Figure 6.5: Comparing denoising diffusion GAN with other models in the generative learning
trilemma.

different number of denoising steps (T ). We observe that T = 1, which is the unconditional

GAN case, leads to significantly worse results with low sample diversity, indicated by the low

recall score. This confirms the benefits of breaking generation into several denoising steps,

especially for improving the sample diversity. When varying T > 1, we observe that T = 4

gives the best results, whereas there is a slight degradation in performance for larger T . We

hypothesize that we may require a significantly higher capacity to accommodate larger T ,

as we need a conditional GAN for each denoising step.

Diffusion as data augmentation: Our model shares some similarities with recent

work on applying data augmentation to GANs [Karras et al., 2020a, Zhao et al., 2020]. To

study the effect of perturbing inputs, we train a one-shot GAN with our network structure

following the protocol in [Zhao et al., 2020] with the forward diffusion process as data aug-

mentation. Specifically, in Zhao et al. [2020], a differentiable transformation F is applied

to the sample x (both real and generated) before sending it to the discriminator, and the

generator is updated by back-propagating through F . In our study, we choose F to be
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Figure 6.6: Sample quality vs sampling time trade-off.

192



Figure 6.7: CIFAR-10 qualitative samples of denoising diffusion GAN.
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Table 6.1: Results for unconditional generation on CIFAR-10.

Model IS↑ FID↓ Recall↑ NFE ↓ Time (s) ↓

Denoising Diffusion GAN (ours), T=4 9.63 3.75 0.57 4 0.21

DDPM [Ho et al., 2020] 9.46 3.21 0.57 1000 80.5
NCSN [Song and Ermon, 2019] 8.87 25.3 - 1000 107.9
Adversarial DSM [Jolicoeur-Martineau et al., 2021b] - 6.10 - 1000 -
Likelihood SDE [Song et al., 2021a] - 2.87 - - -
Score SDE (VE) [Song et al., 2021b] 9.89 2.20 0.59 2000 423.2
Score SDE (VP) [Song et al., 2021b] 9.68 2.41 0.59 2000 421.5
Probability Flow (VP) [Song et al., 2021b] 9.83 3.08 0.57 140 50.9
LSGM [Vahdat et al., 2021] 9.87 2.10 0.61 147 44.5
DDIM, T=50 [Song et al., 2020a] 8.78 4.67 0.53 50 4.01
FastDDPM, T=50 [Kong and Ping, 2021] 8.98 3.41 0.56 50 4.01
Recovery EBM [Gao et al., 2021] 8.30 9.58 - 180 -
Improved DDPM [Nichol and Dhariwal, 2021] - 2.90 - 4000 -
VDM [Kingma et al., 2021] - 4.00 - 1000 -
UDM [Kim et al., 2021] 10.1 2.33 - 2000 -
D3PMs [Austin et al., 2021] 8.56 7.34 - 1000 -
Gotta Go Fast [Jolicoeur-Martineau et al., 2021a] - 2.44 - 180 -
DDPM Distillation [Luhman and Luhman, 2021] 8.36 9.36 0.51 1 -

SNGAN [Miyato et al., 2018] 8.22 21.7 0.44 1 -
SNGAN+DGflow [Ansari et al., 2021] 9.35 9.62 0.48 25 1.98
AutoGAN [Gong et al., 2019] 8.60 12.4 0.46 1 -
TransGAN [Jiang et al., 2021] 9.02 9.26 - 1 -
StyleGAN2 w/o ADA [Karras et al., 2020a] 9.18 8.32 0.41 1 0.04
StyleGAN2 w/ ADA [Karras et al., 2020a] 9.83 2.92 0.49 1 0.04
StyleGAN2 w/ Diffaug [Zhao et al., 2020] 9.40 5.79 0.42 1 0.04

Glow [Kingma and Dhariwal, 2018] 3.92 48.9 - 1 -
PixelCNN [Oord et al., 2016] 4.60 65.9 - 1024 -
NVAE [Vahdat and Kautz, 2020] 7.18 23.5 0.51 1 0.36
IGEBM [Du and Mordatch, 2019] 6.02 40.6 - 60 -
VAEBM [Xiao et al., 2021a] 8.43 12.2 0.53 16 8.79

randomly sampled from the diffusion step. The result, presented in the second group of

Table 6.2, is significantly worse than our model, indicating that our model is not equivalent

to augmenting data before applying the discriminator.

Parametrization for pθ(xt−1|xt): We study two alternative ways to parametrize the

denoising distribution for the same T = 4 setting. Instead of letting the generator produce

estimated samples of x0, we set the generator to directly output denoised samples xt−1

without posterior sampling (direct denoising), or output the noise ϵt that perturbs a clean

image to produce xt (noise generation). Note that the latter case is closely related to most

diffusion models where the network deterministically predicts the perturbation noise. In
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Table 6.2: Ablation studies on CIFAR-10.

Model Variants IS↑ FID↓ Recall↑

T = 1 8.93 14.6 0.19
T = 2 9.80 4.08 0.54
T = 4 9.63 3.75 0.57
T = 8 9.43 4.36 0.56

One-shot w/ aug 8.96 13.2 0.25

Direct denoising 9.10 6.03 0.53
Noise generation 8.79 8.04 0.52

No latent variable 8.37 20.6 0.42

Table 6.2, we show that although these alternative parametrizations work reasonably well,

our main parametrization outperforms them by a large margin.

Importance of latent variable: Removing latent variables z converts our denoising

model to a unimodal distribution. In the last line of Table 6.2, we study our model’s

performance without any latent variables z. We see that the sample quality is significantly

worse, suggesting the importance of multimodal denoising distributions. In Figure 6.8, we

visualize the effect of latent variables by showing samples of pθ(x0|x1), where x1 is a fixed

noisy observation. We see that while the majority of information in the conditioning x1 is

preserved, the samples are diverse due to the latent variables.

6.4.3 Mode Coverage

Besides the recall score in Table 6.1, we also evaluate the mode coverage of our model on the

popular 25-Gaussians and StackedMNIST. The 25-Gaussians dataset is a 2-D toy dataset,

generated by a mixture of 25 two-dimensional Gaussian distributions, arranged in a grid.

We train our denoising diffusion GAN with 4 denoising steps and compare it to other models

in Figure 6.9. We observe that the vanilla GAN suffers severely from mode collapse, and

while techniques like WGAN-GP [Gulrajani et al., 2017] improve mode coverage, the sample

quality is still limited. In contrast, our model covers all the modes while maintaining high
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Figure 6.8: Multi-modality of denoising distribution given the same noisy observation. Left:
clean image x0 and perturbed image x1. Right: Three samples from pθ(x0|x1).

Figure 6.9: Qualitative results on the 25-Gaussians dataset.

sample quality. We also train a diffusion model and plot the samples generated by 100 and

500 denoising steps. We see that diffusion models require a large number of steps to maintain

high sample quality.

StackMNIST contains images generated by randomly choosing 3 MNIST images and

stacking them along the RGB channels. Hence, the data distribution has 1000 modes.

Following the setting of Lin et al. [2018], we report the number of covered modes and the

KL divergence from the categorical distribution over 1000 categories of generated samples to

true data in Table 6.3. We observe that our model covers all modes faithfully and achieves

the lowest KL compared to GANs that are specifically designed for better mode coverage or
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Table 6.3: Mode coverage on StackedMNIST.

Model Modes↑ KL↓

VEEGAN ([Srivastava et al., 2017]) 762 2.173
PacGAN ([Lin et al., 2018]) 992 0.277
PresGAN ([Dieng et al., 2019]) 1000 0.115
InclusiveGAN ([Yu et al., 2020b]) 997 0.200
StyleGAN2 ([Karras et al., 2020b]) 940 0.424
Adv. DSM ([Jolicoeur-Martineau et al., 2021b]) 1000 1.49
VAEBM ([Xiao et al., 2021a]) 1000 0.087

Denoising Diffusion GAN (ours) 1000 0.071

StyleGAN2 which is known to have the best sample quality. Our model even has lower KL

divergence than some likelihood models such as VAEBM, suggesting that our model captures

the modes of training distribution faithfully.

6.4.4 Training Stability

In Fig. 6.10, we plot the discriminator loss for different time steps in the diffusion process

when T = 4. We observe that the training of our denoising diffusion GAN is stable, and we do

not see any explosion in loss values, as is sometimes reported for other GAN methods such as

Brock et al. [2018]. The stability might be attributed to two reasons: First, the conditioning

on xt for both generator and discriminator provides a strong signal. The generator is required

to generate a few plausible samples given xt, and the discriminator requires classifying them.

The xt conditioning keeps the discriminator and generator in a balance. Second, we are

training the GAN on relatively smooth distributions, as the diffusion process is known as

a smoothening process that brings the distributions of fake and real samples closer to each

other [Lyu, 2012]. As we can see from Fig. 6.10, the discriminator loss for t > 0 is higher than

t = 0 (the last denoising step). Note that t > 0 corresponds to training the discriminator

on noisy images, and in this case, the true and generator distributions are closer to each

other, making the discrimination harder and hence resulting in higher discriminator loss.
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Figure 6.10: The discriminator loss per denoising step during training.

We believe that such a property prevents the discriminator from overfitting, which leads to

better training stability.

6.4.5 High Resolution Image

We train our model on datasets with larger images, including CelebA-HQ [Karras et al.,

2017] and LSUN Church [Yu et al., 2015] at 256×256px resolution. We report FID on these

two datasets in Table 6.4 and 6.5. Similar to CIFAR-10, our model obtains competitive

sample quality among the best diffusion models and GANs. In particular, in LSUN Church,

our model outperforms DDPM and ImageBART. Although, some GANs perform better on

this dataset, their mode coverage is not reflected by the FID score.

Qualitative samples of CelebA-HQ AND LSUN Church are presented in Figure 6.11 and
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Table 6.4: Generative results on CelebA-HQ-256

Model FID↓

Denoising Diffusion GAN (ours) 7.64

Score SDE [Song et al., 2021b] 7.23
LSGM [Vahdat et al., 2021] 7.22
UDM [Kim et al., 2021] 7.16

NVAE [Vahdat and Kautz, 2020] 29.7
VAEBM [Xiao et al., 2021a] 20.4
NCP-VAE [Aneja et al., 2021] 24.8

PGGAN [Karras et al., 2017] 8.03
Adv. LAE [Pidhorskyi et al., 2020] 19.2
VQ-GAN [Esser et al., 2021b] 10.2
DC-AE [Parmar et al., 2021] 15.8

Table 6.5: Generative results on LSUN Church 256

Model FID↓

Denoising Diffusion GAN (ours) 5.25

DDPM [Ho et al., 2020] 7.89
ImageBART [Esser et al., 2021a] 7.32
Gotta Go Fast (Jolicoeur-Martineau et al.) 25.67

PGGAN [Karras et al., 2017]) 6.42
StyleGAN [Karras et al., 2019] 4.21
StyleGAN2 [Karras et al., 2020b] 3.86
CIPS [Anokhin et al., 2021] 2.92
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6.12 respectively.

6.4.6 Additional Results

Stroke-based Image Synthesis

Meng et al. [2021b] propose an interesting application of diffusion models to stroke-based

generation. Specifically, they perturb a stroke painting by the forward diffusion process,

and denoise it with a diffusion model. The method is particularly promising because it

only requires training an unconditional generative model on the target dataset and does

not require training images paired with stroke paintings like GAN-based methods [Sangkloy

et al., 2017, Park et al., 2019]. We apply our model to stroke-based image synthesis and

show qualitative results in Figure 6.13. The generated samples are realistic and diverse,

while the conditioning in the stroke paintings is faithfully preserved. Compared to Meng

et al. [2021b], our model enjoys a 1100× speedup in generation, as it takes only 0.16s to

generate one image at 256 resolution vs. 181s for Meng et al. [2021b]. This experiment

confirms that our proposed model enables the application of diffusion models to interactive

applications such as image editing.

Additional Visualization for pθ(x0|xt)

In Figure 6.14 and Figure 6.15, we show visualizations of samples from pθ(x0|xt) for different

t. Note that except for pθ(x0|x1), the samples from pθ(x0|xt) do not need to be sharp, as they

are only intermediate outputs of the sampling process. The conditioning is less preserved as

the perturbation in xt increases, and in particular xT (x4 in our example) contains almost

no information of clean data x0.
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Figure 6.11: Qualitative results on CelebA-HQ of denoising diffusion GAN.
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Figure 6.12: Qualitative results on LSUN Church of denoising diffusion GAN.
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Figure 6.13: Qualitative results on stroke-based synthesis. Top row: stroke paintings.
Bottom two rows: generated samples corresponding to the stroke painting.

6.4.7 Experimental Details

In this section, we present our experimental settings in detail.

Network Structure

Generator: Our generator structure largely follows the U-net structure [Ronneberger et al.,

2015] used in NCSN++ [Song et al., 2021b], which consists of multiple ResNet blocks [He

et al., 2016] and Attention blocks [Vaswani et al., 2017]. Hyper-parameters for the network

design, such as the number of blocks and number of channels, are reported in Table 6.6.

We follow the default settings in Song et al. [2021b] for other network configurations not

mentioned in the table, including Swish activation function, upsampling and downsampling

with anti-aliasing based on Finite Impulse Response (FIR) [Zhang, 2019], re-scaling all skip

connections by 1√
2
, using residual block design from BigGAN [Brock et al., 2018] and incor-

porating progressive growing architectures [Karras et al., 2020b]. See Appendix H of Song

et al. [2021b] for more details on these configurations.
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Figure 6.14: Visualization of samples from pθ(x0|xt) for different t on CelebAHQ. For each
example, the top row contains xt from diffusion process steps, where x0 is a sample from
the dataset. The bottom rows contain 3 samples from pθ(x0|xt) for different t’s.
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Figure 6.15: Visualization of samples from pθ(x0|xt) for different t on LSUN Church. For
each example, the top row contains xt from diffusion process steps, where x0 is a sample
from the dataset. The bottom rows contain 3 samples from pθ(x0|xt) for different t’s.
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Table 6.6: Hyper-parameters for the generator network.

CIFAR10 CelebaHQ LSUN Church

# of ResNet blocks per scale 2 2 2
Initial # of channels 128 64 128
Channel multiplier for each scale (1, 2, 2, 2) (1, 1, 2, 2, 4, 4) (1, 1, 2, 2, 4, 4)
Scale of attention block (16, ) (16, ) (16, )
Latent Dimension 256 100 100
# of latent mapping layers 3 3 3
Latent embedding dimension 512 256 256

We follow Ho et al. [2020] and use sinusoidal positional embeddings for conditioning

on integer time steps. The dimension for the time embedding is 4× the number of initial

channels presented in Table 6.6.

The fundamental difference between our generator network and the networks of previous

diffusion models is that our generator takes an extra latent variable z as input. We use

z ∼ N (0, I) for all experiments. We replace all the group normalization (GN) layers in

the network with adaptive group normalization (AdaGN) layers to allow the input of latent

variables. The latent variable z is first transformed by a fully-connected network (called

mapping network), and then the resulting embedding vector, denoted by w, is sent to every

AdaGN layer. Each AdaGN layer contains one fully-connected layer that takes w as input,

and outputs the per-channel shift and scale parameters for the group normalization. The

network’s feature maps are then subject to affine transformations using these shift and scale

parameters of the AdaGN layers. The mapping network and the fully-connected layer in

AdaGN are independent of time steps t, as we found no extra benefit in incorporating time

embeddings in these layers. Details about latent variables are also presented in Table 6.6.

Discriminator: We design our time-dependent discriminator with a convolutional net-

work with ResNet blocks, where the design of the ResNet blocks is similar to that of the

generator. The discriminator tries to discriminate real and fake xt−1, conditioned on xt and

t. The time conditioning is enforced by the same sinusoidal positional embedding as in the
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generator. The xt conditioning is enforced by concatenating xt and xt−1 as the input to

the discriminator. We use LeakyReLU activations with a negative slope 0.2 for all layers.

Similar to Karras et al. [2020b], we use a minibatch standard deviation layer after all the

ResNet blocks. We present the exact architecture of discriminators in Table 6.7.

Table 6.7: Network structures for the discriminator.

CIFAR-10

1 × 1 conv2d, 128
ResBlock, 128

ResBlock down, 256
ResBlock down, 512
ResBlock down, 512
minibatch std layer
Global Sum Pooling
FC layer → scalar

CelebAHQ and LSUN Church

1 × 1 conv2d, 128
ResBlock down, 256
ResBlock down, 512
ResBlock down, 512
ResBlock down, 512
ResBlock down, 512
ResBlock down, 512
minibatch std layer
Global Sum Pooling
FC layer → scalar

Training

Objective: We train our denoising diffusion GAN with the following adversarial objective:

min
ϕ

T∑
t=1

Eq(xt)
[
Eq(xt−1|xt)[− log(Dϕ(xt−1,xt, t)] + Epθ(xt−1|xt)[− log(1−Dϕ(xt−1,xt, t))]

]

max
θ

T∑
t=1

Eq(xt)Epθ(xt−1|xt)[log(Dϕ(xt−1,xt, t))]

Similar to Ho et al. [2020], during training we randomly sample an integer time step

t ∈ [1, 2, 3, 4] for each datapoint in a batch. Besides the main objective, we also add an R1

regularization term [Mescheder et al., 2018] to the objective for the discriminator. The R1
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Table 6.8: Optimization hyper-parameters.

CIFAR10 CelebaHQ LSUN Church

Initial learning rate for discriminator 10−4 10−4 10−4

Initial learning rate for generator 1.6 × 10−4 1.6 × 10−4 2 × 10−4

Adam optimizer β1 0.5 0.5 0.5
Adam optimizer β2 0.9 0.9 0.9
EMA 0.9999 0.999 0.999
Batch size 128 32 64
# of training iterations 400k 750k 600k
# of GPUs 4 8 8

term is defined as

R1(ϕ) =
γ

2
Eq(xt)q(xt−1|xt)

[∥∥∇xt−1Dϕ(xt−1,xt, t)
∥∥2] , (6.16)

where γ is the coefficient for the regularization. We use γ = 0.05 for CIFAR-10, and γ = 1

for CelebAHQ and LSUN Church.

Optimization: We train our models using the Adam optimizer [Kingma and Ba, 2015].

We use cosine learning rate decay [Loshchilov and Hutter, 2016] for training both the gener-

ator and discriminator. Similar to Ho et al. [2020], Song et al. [2021b], Karras et al. [2020a],

we observe that applying an exponential moving average (EMA) on the generator is crucial

to achieve high performance. We summarize the optimization hyper-parameters in Table

6.8.

We train our models on CIFAR-10 using 4 V100 GPUs. On CelebAHQ and LSUN Church

we use 8 V100 GPUs. The training takes approximately 48 hours on CIFAR-10, and 180

hours on CelebAHQ and LSUN Church.

Evaluation

When evaluating IS, FID and recall score, we use 50k generated samples for CIFAR-10 and

LSUN Church, and 30k samples for CelebAHQ (since the CelebA HQ dataset contains only
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30k samples).

When evaluating sampling time, we use models trained on CIFAR-10 and generate a

batch of 100 samples. We benchmark the sampling time on a machine with a single V100

GPU. We use Pytorch 1.9.0 and CUDA 11.0.

Ablation Studies

Here we introduce the settings for the ablation study in Section 6.4.2. We observe that

training requires a larger number of training iterations when T is larger. As a result, we

train the model for each T until the FID score does not increase any further. The number

of training iteration is 200k for T = 1 and T = 2, 400k for T = 4 and 600k for T = 8. We

use the same network structures and optimization settings as in the main experiments.

For the data augmentation baseline, we follow the differentiable data augmentation

pipeline in Zhao et al. [2020]. In particular, for every (real or fake) image in the batch,

we perturbed it by sampling from a random timestep at the diffusion process (except the

last diffusion step where the information of data is completely destroyed). We find the re-

sults insensitive to the number of possible perturbation levels (i.e, the number of steps in the

diffusion process), and we report the result using a diffusion process with 4 steps. Since the

perturbation by the diffusion process is differentiable, we can train both the discriminator

and generator with the perturbed samples. See Zhao et al. [2020] for a detailed explanation

for the training pipeline.

For the experiments on alternative parametrizations, we use T = 4 for the diffusion

process and keep other settings the same as in the main experiments.

For the experiment on training a model without latent variables, similar to the main

experiments, the generator takes the conditioning xt as its input, and the time conditioning

is still enforced by the time embedding. However, the AdaGN layers are replaced by plain

GN layers, such that no latent variable is needed, and the mapping network for z is removed.

209



Other settings follow the main experiments.

Toy data and StackedMNIST

For the 25-Gaussian toy dataset, both our generator and discriminator have 3 fully-connected

layers each with 512 hidden units and LeakyReLU activations (negative slope of 0.2). We

enforce both the conditioning on xt and t by concatenation with the input. We use the

Adam optimizer with a learning rate of 10−4 for both the generator and discriminator. The

batch size is 512, and we train the model for 50k iterations.

Our experimental settings for StackedMNIST are the same as those for CIFAR-10, except

that we train the model for only 150k iterations.

6.5 Conclusion

Deep generative learning frameworks still struggle with addressing the generative learning

trilemma. Diffusion models achieve exceptionally high-quality and diverse sampling. How-

ever, their slow sampling and high computational cost do not yet allow them to be widely

applied in real-world applications. In this paper, we argued that one of the main sources

of slow sampling in diffusion models is the Gaussian assumption in the denoising distribu-

tion, which is justified only for very small denoising steps. To remedy this, we proposed

denoising diffusion GANs that model each denoising step using a complex multimodal dis-

tribution, enabling us to take large denoising steps. In extensive experiments, we showed

that denoising diffusion GANs achieve high sample quality and diversity competitive to the

original diffusion models while being orders of magnitude faster at sampling. Compared to

traditional GANs, our proposed model enjoys better mode coverage and sample diversity.

Our denoising diffusion GAN overcomes the generative learning trilemma to a large extent,

allowing diffusion models to be applied to real-world problems with low computational cost.

Denoising diffusion GAN successfully tackles the generative learning trilemma. Our
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model achieves

1. Faster sampling, due to the multimodal complex denoising distribution parametrized

by conditional GAN;

2. Better mode coverage, due to simple conditional generation problem at each step

3. High-quality samples, due to adversarial training

Our model is a symbiotic composition of denoising diffusion models and GANs. On one

hand, conditional GAN enables the denoising distribution to be multi-modal and expressive,

allowing larger denoising steps and significantly faster sampling. On the other hand, the

denoising diffusion model breaks the generation into several easier conditional tasks, where

each task is defined on smoothened data perturbed by the noise so that the training is

stabilized and the mode collapse issue is greatly alleviated.
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CHAPTER 7

CONCLUSION

7.1 Summary

The dissertation follows the journey toward pushing the limits of deep generative models.

After a high-level introduction of generative learning in Chapter 1, we dive into existing deep

generative models that are fundamental in Chapter 2. In particular, we review Variational

Auto-encoders, Normalizing Flows, Energy-based Models, Denoising Diffusion Models, and

Generative Adversarial Networks. We list and carefully analyze their pros and cons. The

analysis of existing generative models provides the motivation for later chapters, where we

propose new models with the idea of symbiotic composition, which is to combine two existing

models together with the hope that the new model will enjoy the best of both worlds.

In Chapter 3, we propose Generative Latent Flow, which is a combination of auto-

encoders and normalizing flows. The auto-encoder learns to reconstruct data with low-

dimensional latent variables, and the normalizing flow learns to map the latent variables

to noise and vice versa. The resulting model shows superior generative performance over

previous auto-encoder based models due to the expressive prior distribution modeled by the

normalizing flow, and the auto-encoder makes the training of the normalizing flow easier by

mapping the data to a lower-dimensional space.

In Chapter 4, we introduce the idea of exponential tilting with EBMs. We propose to

use a base generative model, such as a VAE or a normalizing flow, to capture the shape of

the data distribution roughly and later introduce a EBM to refine the obtained distribution.

The base generative model makes the training of EBM much more efficient by providing a

good starting point as well as a smooth latent space that allows easier MCMC sampling.

The EBM refines the density and significantly improves the sample quality by reducing the

density mismatch between the base model and the true data distribution.
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In Chapter 5, we investigate the role of Langevin dynamics in the maximum likelihood

training of EBMs. We treat the Langevin dynamics as an implicit generator model by

removing the noise term and further introduce the generator loss of WGAN to optimize

the implicit generator. Such a combination of EBMs and GANs improves both the sample

quality and training stability of EBMs.

In Chapter 6, we tackle the slow sampling issue of denoising diffusion models. We at-

tribute the slow sampling issue to the Gaussian assumption of the reverse process and propose

to model the single-step denoising distribution with conditional GANs. The resulting denois-

ing diffusion GAN model obtains competitive sample quality with denoising diffusion models

while enjoying 1000× speed-up in sampling. In addition, the denoising diffusion framework

also stabilizes the training of GANs and alleviates the mode collapse issue due to the fact

that the GANs are trained with conditional generation tasks on smoothed data. We hope

that our findings in this dissertation may serve as a minor contribution to the development

of generative learning, and motivate follow up work that further pushes the limits of deep

generative models.

7.2 Future Work

In future work, we wish to continue the journey in the field of deep generative models.

Specifically, it is our hope to design stronger generative models as well as extend the models

to different domains. For example, after the publication of denoising diffusion GAN, the

model has been applied to the task of text-to-speech synthesis by Liu et al. [2022]. We believe

that all methods proposed in this dissertation have the potential to be used in domains other

than image, such as video, sequence, graph and 3D point cloud.

Generative modeling is one sub-topic of the wider concept of unsupervised learning. Re-

cently, we have seen tremendous progress in the field of unsupervised learning that tries

to learn useful representations without labels and close the gap to supervised models. In
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the image domain, the field of unsupervised learning is currently dominated by contrastive

pre-training [Chen et al., 2020b, He et al., 2020]. However, recently generative pretraining

has also shown promising results [He et al., 2021]. There are other possibilities of extend-

ing generative models to the wider context of unsupervised learning and applying them to

downstream tasks.

One additional topic of generative models that has recently become popular is multi-

modality generation. For example, one interesting task is to generate images conditioned

on given text [Ramesh et al., 2021, Nichol et al., 2021]. This is a promising direction with

many exciting real-world applications. We would like to explore more possibilities in this

direction.
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