THE UNIVERSITY OF CHICAGO

DESIGNING DEEP GENERATIVE MODELS WITH SYMBIOTIC COMPOSITION

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

COMMITTEE ON COMPUTATIONAL AND APPLIED MATHEMATICS

BY
ZHISHENG XIAO

CHICAGO, ILLINOIS
JUNE 2022



Copyright (C) 2022 by Zhisheng Xiao
All Rights Reserved



To my parents for their unconditional love and support.



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . vii
LIST OF TABLES . . . . . . . e xi
ACKNOWLEDGMENTS . . . . . . e xii
ABSTRACT . . . . Xiv
1 INTRODUCTION . . . .. e e e 1
1.1 What are Generative Models? . . . . . .. . ... .. ... .. .. ..., 1
1.1.1 Generative Modeling: Motivations . . . . . . . .. .. ... ... ... 1
1.1.2  Generative Modeling: Formalizing the Problem . . . . . .. ... .. 3
1.1.3 Generative Model vs. Discriminative Model . . . . . . ... ... .. 4
1.2 Important Concepts. . . . . . . . . . . . . 6
1.2.1 Maximum Likelihood Approach for Training Generative Models . . . 7
1.2.2  Density Ratio Approach for Training Generative Models . . . . . . . 10
1.2.3 Langevin Dynamics . . . . . . . . . .. ... oo 13
1.2.4 Evaluation of Generative Models . . . . . .. ... ... ... .... 15
1.3 High-level Overview of Proposed Methods . . . . . ... .. ... .. ... .. 17
1.3.1 Flexible Prior of Auto-encoder Models . . . . . ... ... ... ... 18
1.3.2  Exponential Tilting of Generative Models . . . . . .. ... ... .. 19
1.3.3 EBMs with short-run Langevin Dynamics as Generator Models . . . 20

1.3.4 Denoising Diffusion GANs: Expressive Denoising Distribution in Dif-
fusion Models . . . . . . . .. 21
1.4 Organization . . . . . . . . . .. e 22
2 A COMPARATIVE REVIEW OF DEEP GENERATIVE MODELS . . . . . . .. 23
2.1 Variational Auto-encoders . . . . . . ... ... 24
2.1.1  Preliminaries . . . . . . . . ... 24
2.1.2 Formulation of VAEs . . . . .. ..o 26
2.1.3 Parameterization and Optimization . . . . . . . .. .. ... .. ... 29
2.1.4 Typical issues with VAEs . . . . . .. ... .. .. L. 32
2.1.5 Hierarchical VAEs . . . . . . .. ... 33
2.2 Normalizing Flows . . . . . . . . . ... 34
2.2.1 Fundamentals of Normalizing Flows . . . . . . .. ... ... .. ... 36
2.2.2 Parameterizations of Normalizing Flows . . . . ... ... ... ... 40
2.2.3 Applications of Normalizing Flows . . . . . . ... ... ... .... 43
2.2.4  Limitations of Normalizing Flows . . . . . . ... ... ... ..... 44
2.3 Energy-based Models . . . . . . . ... 45
2.3.1 Formulation of EBMs . . . . . . .. ..o 46
2.3.2 Maximum Likelihood Training with MCMC . . . . . ... ... ... 49

2.3.3 Alternative Methods for Training EBMs . . . . .. ... ... .... 52

v



2.4 Denoising Diffusion Models . . . . . . . .. ... oo %)

2.4.1 Formulation of Diffusion Models . . . . . . . ... ... ... ... .. 56
2.4.2  Training Denoising Diffusion Models . . . . . . .. .. .. ... ... 59
2.4.3 Extension of Diffusion Models to Continuous Time . . . .. .. ... 63
2.4.4 Limitations of Diffusion Models . . . . . . ... ... ... ... ... 65
2.5 Generative Adversarial Networks . . . . . . . .. ... .. ... .. ..... 66
2.5.1 Understanding the Training of GANs . . . . . . ... ... ... ... 69
2.5.2  Challenges in Training GANs . . . . . . ... ... ... ... .... 71
2.5.3 Important GAN variants . . . . . . . .. . ... ... ... .. ... 74
2.6 SUMMATY . . . . . . v e e 78
GENERATIVE LATENT FLOW: TOWARDS FLEXIBLE PRIOR DISTRIBUTIONS
IN LATENT SPACE . . . . . . . e 80
3.1 Motivation and Introduction . . . . . . .. ... ... L 80
3.2 Related Work . . . . . .o 83
3.3 Combining Normalizing Flows with AE-based Models . . . . . . .. ... .. 85
3.3.1 VAEs with Normalizing Flow Prior . . . . .. ... ... .. ... .. 85
3.3.2  Generative Latent Flow . . . . . ... ... ... ... ... ... 88
3.4 Experimental Results . . . . . . .. . ... oo 90
341 Main Results . . . . .. ..o 90
3.4.2 Comparisons: GLF vs. Regularized GLF and VAE+flow Prior . . . . 95
3.4.3 Experimental Settings . . . .. ... ... ... . 98
3.4.4 Settings for training RAEA+GMM . . . . ... ... ... ... 101
3.5 Conclusion . . . . . . . . e 101
EXPONENTIAL TILTING OF GENERATOR MODELS WITH ENERGY-BASED
MODELS . . . . e 103
4.1 Motivation and Introduction . . . . . . .. . ..o 103
4.2 Related Work . . . . . .o 108
4.3 Formulation of Exponential Tilting with EBMs . . . . . .. ... ... ... 109
4.3.1 Normalizing Flows as the Base Generative Model . . . . . . ... .. 110
4.3.2 VAEBM: VAEs as the Base Distribution . . . . ... ... ... ... 112
4.3.3 Training of VAEBM . . . . .. ..o oo 113
4.3.4 An Extension to the Training Objective of VAEBM . . . . . . . . .. 120
4.4 Experimental Results . . . . . . .. ... o o 123
4.4.1 Small VAEs as the Base Model . . . . ... ... ... ... ..... 123
4.4.2 Normalizing Flows as the Base Model . . . . . . ... ... ... ... 127
4.4.3 Large Hierarchical VAEs as the Base Model . . . . . ... ... ... 130
4.5 Conclusion . . . . . . . . 151
SHORT-RUN LANGEVIN DYNAMICS AS GENERATOR MODELS . . . . . .. 153
5.1 Motivation and Introduction . . . . . . . ... ..o oL 153
5.1.1 Alternative understanding of maximum likelihood training . . . . . . 155
5.2 Related Work . . . . . . . . 157



5.3 Noise-free Sampling Dynamics as Flow Models . . . . . . ... .. ... ... 158

5.4 Connection with W-GAN and the generator loss term . . . . . . . .. .. .. 160
5.5  Experimental Results . . . . . . . . ... oo 162
5.5.1 2D toydata . . . . ..o 162
5.5.2 Image Data . . . . . . . .. .. 165
5.5.3 Experimental settings . . . . . . .. ... Lo 169
5.6 Conclusion . . . . . . . .. 172

6 DENOISING DIFFUSION GANS FOR ACCELERATING SAMPLING FROM DE-
NOISING DIFFUSION MODELS . . . . . . . . . .. . 173
6.1 Motivation and Introduction . . . . . . .. .. ..o 173
6.2 Related Work . . . . . . . . 179
6.3 Denoising Diffusion GANs . . . . . . . .. ..o 181
6.3.1 Parameterizing the Implicit Denoising Model . . . . . . . . . .. . .. 183
6.3.2 Network Design . . . . . . . . . ... L 185
6.3.3 Diffusion Process . . . . . . . . ... L 188
6.4 Experimental Results . . . . . . . . . .. 189
6.4.1 Overcoming the Generative Learning Trilemma . . . . . .. ... .. 189
6.4.2 Ablation Studies . . . . .. ... 190
6.4.3 Mode Coverage . . . . . . . . . .. 195
6.4.4 Training Stability . . . . . .. ... L 197
6.4.5 High Resolution Image . . . . . . .. .. .. ... ... ... ..., 198
6.4.6 Additional Results . . . . . .. ... ... 200
6.4.7 Experimental Details . . . . . . . .. ... ... ... .. 203
6.5 Conclusion . . . . . . . . L 210
7 CONCLUSION . . . o 212
7.1 SUMMATY . . . . oo 212
7.2 Future Work . . . . . . . 213
REFERENCES . . . . . . 215

vi



1.1
1.2

2.1

2.2

2.3

24

2.5
2.6

3.1
3.2
3.3
3.4

3.5
3.6

3.7

4.1

LIST OF FIGURES

The landscape of deep generative modeling. . . . . . . . .. .. ... ... ...

Generative models can generate samples in various domain. . . . . . . .. . ..
An example of adversarial attack: adding noise to an almost perfectly classified
image that results in a shift of predicted label. . . . . . . . ... .. ... .. ..

[lustration of a normalizing low model, transforming a simple distribution pg to
a complex one through composition of transformations. . . . . . . . . . ... ..
Mlustration of maximum likelihood training of EBMs. Left: shape of the initial
energy function. Blue dots are real data, red dots are samples from the model.
The training update increases the energy of sampled data, and decreases the
energy of real data. Right: the energy function after the update. It assigns
lower energy value to real data, and higher energy value at sampled data ensure
the normalization constraint. . . . . . . . . . ... ... ... L.
[lustration of denoising diffusion models. The forward process, denoted by ¢, is a
Markov chain of diffusion steps to slowly add random noise to data. The reverse
process, denoted by pg, is a Markov chain that is learned to reverse the forward
diffusion process and recover clean data from noise. . . . . . . . ... ... ...
Iustration of GANs. The discriminator tries to distinguish real and fake samples,
while the generator generates samples that can fool the discriminator. . . . . . .
An example of mode collapse. The generator produce repeated patterns. .
[lustration of Style GAN. Figure taken from Karras et al. [2019]. Latent vector
z is first mapped into an intermediate latent space VW, which then controls the
generator through adaptive instance normalization (AdalN) at each convolution

Mlustration of the GLF model. The red arrow contains a stop gradient operation.

Randomly generated samples from our method trained on different datasets.

Random noise interpolation in the noise space of GLF on CelebA dataset . . . .
Some randomly generated samples are presented in the leftmost column in each
picture. The other 5 columns of each picture show the top 5 nearest neighbors of
the corresponding sample in the training set. . . . . . . . .. ... ... ... ..
Randomly generated samples from our method with perceptual loss. . . . . . . .
(a) Record of FID scores on CIFAR-10 for VAEs+flow prior with different values
of f and GLF. (b) Record of entropy losses for corresponding models. (c¢) Record
of NLL losses for corresponding models. . . . . . .. ... ... ... ... ...
(a) Record of FID scores on CIFAR-10 for regularized GLF with different values
of f# and GLF. f = 1 and 10 are omitted because they lead to divergence in
the reconstruction loss. (b) Record of reconstruction loss for the corresponding
models. (¢) Record of NLL loss for the corresponding models. . . . . . . .. ..

illustration of such a density mismatch between true data distribution and a
parametrized VAE model. Red crosses are training data. . . . . . ... ... ..

vil

95

73

7

89
91
94

95
96

97

98



4.2

4.3

4.4

4.5
4.6

4.7

4.8

4.9

4.10
4.11

4.12
4.13
4.14
4.15

4.16

4.17
4.18

Samples from NVAE, one of the strongest VAE models, trained on CelebA-HQ
dataset. Although the overall shape of human faces is good, we observe undesir-
able artifacts especially on the boundary of faces. . . . . . ... ... ... ...
High level illustration of the idea of exponential tilting with a VAE as the base
generative model. . . . . .. Lo
Our VAEBM is composed of a VAE generator (including the prior and decoder)
and an energy function that operates on samples x generated by the VAE. The
VAE component is trained first, using the standard VAE objective; then, the
energy function is trained while the generator is fixed. Using the VAE generator,
we can express the data variable x as a deterministic function of white noise
samples €5 and ex. This allows us to reparameterize sampling from our VAEBM
by sampling in the joint space of ¢z and ex. . . . . . ... ... ... ..
VAEBMs trained on Swiss Roll and 25-Gaussians datset. . . . . . . . .. .. ..
Qualitative results of VAEBMs with simple comvolutional VAE as the backbone
on MNIST, Fashion MNIST and CIFAR-10. Left: samples generated by VAEs.
Right: samples generated by VAEBMs. . . . . . . . .. ... ...
Qualitative results of exponential tilting with GLOW backbone on MNIST, Fash-
ion MNIST and CIFAR-10. Left: samples generated by from GLOWSs. Right:
samples generated by the EBMs. . . . . .. . .. ... oo
MNIST Langevin dynamics visualization, initialized at samples from prior (the
leftmost column). . . . . . ...
The neural networks implementing an encoder q¢(z|x) and generative model
po(x,z) for a 3-group hierarchical VAE. Figure taken from Vahdat and Kautz
[2020]. Blocks with 'r” denotes residual neural networks. Blocks with '+’ denotes
feature combination (e.g., concatenation). Blocks with 'h ’ denotes trainable
parameters. . . . .. L L L e e e e e
CIFAR-10 samples generated by VAEBM with NVAE backbone. . . . . . . . ..
Visualizing MCMC sampling chains. Samples are generated by running 16 LD
steps. Chains are initialized with pre-trained VAE. We show intermediate samples
at every 2 steps. . . . ...
CelebA 64 samples generated by VAEBM with NVAE backbone. . . . . . . . ..
CelebA HQ 256 samples generated by VAEBM with NVAE backbone. . . . . . .
LSUN church 64 samples generated by VAEBM with NVAE backbone. . . . . .
Visualizing the effect of MCMC sampling on CelebA HQ 256 dataset. Samples
are generated by initializing MCMC with full temperature VAE samples. MCMC
sampling fixes the artifacts of VAE samples, especially on hairs. . . . . . . . ..
Visualizing the effect of MCMC sampling on LSUN Church 64 dataset. For each
subfigure, the top row contains initial samples from the VAE, and the bottom row
contains corresponding samples after MCMC. We observe that MCMC sampling
fixes the corrupted initial samples and refines the details. . . . . . . ... .. ..
Qualitative results of ablation study . . . . ... .. ... ... ... ...
Histogram of unnormalized log-likelihoods on 10k CIFAR-10 train and test set
IMAages. . . . . .



4.19 Qualitative samples obtained from sampling in (x, z)-space with different step sizes.147

5.1

5.2

5.3

5.4

9.5
0.6
5.7

5.8
5.9

6.1
6.2

6.3

6.4
6.5

6.6

Transition with K1 = 100 LD steps for training and varying Ko LD steps for
sampling. Figure taken from Nijkamp et al. [2019]. . . . . .. . ... ... ...
Transition of sequence of samples obtained from initializing the LD with interpo-
lated noise z,. The leftmost and rightmost images are samples from initializing
with zy and z9, respectively. Figure taken from Nijkamp et al. [2019]. . . . . . .
For each toy dataset, column 1: samples from the true data distribution; col-
umn 2: samples from the ODE flow; column 3: (unnormalized) log density of
the EBM by plotting the value of —FEjy(x); column 4: log density of the ODE
flow computed by Equation 5.7. The spurious connections between components
will visually disappear if we take exponential (see Figure 5.5). We plot log density
because the sampling dynamics directly useit. . . . . . . . ... ... ... ..
Results of EBMs trained and sampled from using noisy dynamics on toy data.
For each sub-figure, we plot the left: samples obtained from running Langevin
dynamics, middle: (unnormalized) log density of the EBM , and right: nor-
malized density of the EBM, where the normalization constant is estimated by
numerical integration. . . . . . ... Lo
For each sub-figure, left: normalized density of the EBM, and right: density of
the gradient flow. . . . . . . . . ...
Samples from EBMs w/ noisy dynamics . . . . . . ... ... ... L.
Samples from EBMs w/ noise-free dynamics . . . . . . .. .. ... ..
Samples from EBMs w/ noise-free dynamics plus extra generator loss . . . . . .
Plots of loss curves on CIFAR-10 dataset. (a): When sampling using the noisy
MCMC, the training diverges after 20000 iterations. (b): For better visualization,
we plot the loss curve for the first 20000 iterations. (c): When using noise-free
dynamics, the training is more stable. (d): With the additional generator loss,
although we see some jumps on the loss curve, the training is overall stable.

Generative learning trilemma. . . . . . .. ..o 0oL
Comparison between large and small denoising step sizes. Top: when the step
size is small, the true denoising distribution is single modal and can be approxi-
mated with a Gaussian. Bottom: when the step size is large, the true denoising
distribution is multi-modal and cannot be approximated by a Gaussian. . . . . .
Top: The evolution of 1D data distribution g(xg) through the diffusion process.
The distribution of x( is a Gaussian mixture. Bottom: The visualization of the
true denoising distribution for varying step sizes conditioned on a fixed x5. The
true denoising distribution for a small step size (i.e., ¢(x4]x5 = X)) is close to
a Gaussian distribution. However, it becomes more complex and multimodal as
the step size increases. . . . . . . . . ...
The training process of denoising diffusion GAN. . . . . . . .. ... ... ...
Comparing denoising diffusion GAN with other models in the generative learning
trilemma. . . ... L
Sample quality vs sampling time trade-off. . . . . . . ... ... ...

X



6.7 CIFAR-10 qualitative samples of denoising diffusion GAN. . . . . . . ... ...
6.8 Multi-modality of denoising distribution given the same noisy observation. Left:
clean image xq and perturbed image x1. Right: Three samples from py(xq|x1).

6.9 Qualitative results on the 25-Gaussians dataset. . . . . . . . ... ... .. ...

6.10 The discriminator loss per denoising step during training. . . . . . . . . .. . ..

6.11 Qualitative results on CelebA-HQ of denoising diffusion GAN. . . . . . .. . ..

6.12 Qualitative results on LSUN Church of denoising diffusion GAN.. . . . . . . ..

6.13 Qualitative results on stroke-based synthesis. Top row: stroke paintings. Bot-
tom two rows: generated samples corresponding to the stroke painting.

6.14 Visualization of samples from py(xg|x;) for different ¢ on CelebAHQ. For each
example, the top row contains x; from diffusion process steps, where xq is a
sample from the dataset. The bottom rows contain 3 samples from pg(xg|x¢) for
different t’s. . . . . . L

6.15 Visualization of samples from py(xq|x¢) for different ¢ on LSUN Church. For
each example, the top row contains x; from diffusion process steps, where xg is
a sample from the dataset. The bottom rows contain 3 samples from pg(xg|x¢)
for different t's. . . . . L L

196



3.1

3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8

4.9
4.10

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

LIST OF TABLES

FID scores obtained from different AE-based generative models. For our reported
results, we executed 10 independent trials and report the mean and standard de-
viation of the FID scores. Each trail is computing the FID between 10k generated
images and 10k real images. . . . . . . . ... Lo oL
FID score comparisons of GANs and GLF . . . . . . ... ... ... .. ....
Evaluation of sample quality by precision/recall. . . . . . . . ... ... ... ..
Number of training epochs for Two-stage VAE, GLANN, and GLF . . . . . ..
Per-epoch training time in seconds . . . . . . .. ... oL
Network structure for auto-encoder based on InfoGAN . . . . . . ... ... ..

Comparing the FID scores of base VAEs and VAEBMs. . . . . . ... ... ...
Comparing the FID scores of base GLOWs and GLOWs tilted with EBMs. . . .
Comparing VAEBM and other generative models with IS and FID scores for
unconditional generation on CIFAR-10. . . . . . . . .. ... ... ... ....
Generative performance of VAEBM on CelebA 64 . . . . . . . . ... ... ...
Generative performance of VAEBM on CelebA HQ 256 . . . . . .. .. ... ..
Generative performance of VAEBM on CelebA HQ 256 . . . . . . . .. ... ..
Generative performance of VAEBM on CelebA HQ 256 . . . . . . . .. ... ..
Table for AUROC? of log p(x) computed on several OOD datasets. In-distribution
dataset is CIFAR-10. Interp. corresponds to linear interpolation between CIFAR-

Network structures for the energy function fp(x) . .. .. ... ... ... ...
Important hyper-parameters for training VAEBM. LR stands for learning rate,
BS stands for batch size. . . . . . . ... o

FID scores on image datasets for different models . . . . . . . .. .. ... ...
Network structures for different datasets. nf means number of filters. For MNIST,

Fashion MNIST and CelebA, nf = 32; for CIFAR-10, nf = 64. Swish activation
is applied after each convolutional layer. . . . . . . .. ... .. ... ... ...

Results for unconditional generation on CIFAR-10. . . . . . . .. ... ... ..
Ablation studies on CIFAR-10. . . . . . . . . . . . .. ... ... ... .....
Mode coverage on StackedMNIST. . . . . . . ... ... ... ... .......
Generative results on CelebA-HQ-256 . . . . . . . ... ... ... ... ... ..
Generative results on LSUN Church 256 . . . . . . . ... ... ... ......
Hyper-parameters for the generator network. . . . . ... ... ... ... ...
Network structures for the discriminator. . . . . . . . . . . ... .. ... ....
Optimization hyper-parameters. . . . . . . . . . . . . . . . . ... ... ...

x1

92



ACKNOWLEDGMENTS

I have received a great deal of support and assistance throughout my doctoral study. Fore-
most, I would like to express my sincere gratitude to my advisor Prof. Yali Amit, for his
motivation and immense knowledge, which are invaluable in formulating the research ques-
tions and methodology. He opened up the world of deep generative models to me, which
became my primary research interest throughout the years. We frequently met on paper
reading and research discussions, and his insightful feedback pushed me to sharpen my
thinking and brought my work to a higher level.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Yuehaw
Khoo and Prof. Greg Shakhnarovich, for their insightful comments on the thesis.

I would like to thank my internship mentors, Dr. Arash Vahdat and Dr. Karsten Kreis,
who are research scientists at Nvidia. Although I had not published even a single paper
when I applied for the internship, Arash interviewed me, discussed my research seriously,
and offered me the opportunity, which turned into two productive summer internships at
Nvidia. During the internships, Arash and Karsten helped me brainstorm research ideas and
provide suggestions for writing papers. I appreciate their support.

I want to thank Prof. Mary Silber and Zellencia Harris for their outstanding support in
administrative and general matters. There can be many uncertainties when launching a new
degree program, but their efforts made my Ph.D. study perfectly smooth.

I would like to thank my primary collaborator Qing Yan, who is a Ph.D. student in the
Statistics department. We worked on multiple successful research projects together, and we
had many interesting research discussions. Outside research, we are also good friends.

Further, T would like to show my gratitude to my friends during the years, including
Ruiyi Yang, Zhan Lin, Ziqi Liu, Pinhan Chen, Dongyue Xie, Wanrong Zhu, Dake Zhang, Yi
Wang, Yi Liu, and many others. I spent five wonderful years at the University of Chicago,
and this would not be possible without them.

xii



I would like to thank my fiancée, Peijun Xiao. We have been together for ten years, but
there is never a dull moment with her. We went through so many things and overcame so
many challenges, and she brings so much joy to me. There were good times, there were hard

times, but there were never bad times !

. Finally, we will get married soon. I love her —
always have, always will.

Last but not least, I would like to thank my parents for their unconditional love and
support throughout my life. They support me financially and mentally to study in the U.S.,

and they always encourage me to pursue my goals. Words cannot express my gratitude to

them.

1. By Steve Jobs

xiil



ABSTRACT

Generative models, especially those parameterized by deep neural networks, are powerful
unsupervised learning tools for understanding complex data without labels. Deep generative
models have achieved tremendous success in recent years, with applications in various tasks,
including sample generation, image editing, visual domain adaptation, data augmentation
for discriminative models, and solving inverse problems.

Parallel endeavors have been proceeding along various directions — such as generative ad-
versarial networks (GAN), variational autoencoders (VAE), normalizing flows, energy-based
methods, autoregressive models, and diffusion models — and we are now able to generate
increasingly photorealistic images using deep neural networks. Although these models have
distinct formulations and properties, it is critical to have a clear view of fundamental deep
generative models, understand their pros and cons as well as know the reasons behind them.
With a good understanding of existing generative learning frameworks, we can design new
models that can maintain the advantages while eliminating the limitations of previous mod-
els. Figure 1 is an illustration of the main theme of this dissertation: we give a panoramic
view of the landscape through deep generative models and design new models based on the
landscape.

Following this theme, the dissertation can be divided into two parts. In the first part
(Chapter 1 and 2), we give a high-level overview of deep generative models and dive deep
into several important models, introducing their formulations and analyzing their pros and
cons carefully. Motivated by this analysis, in the second part (Chapter 3, 4, 5 and 6), we
introduce four advances in the direction of designing new generative models by combining
existing ones. For each new model we propose, we carefully present the formulation and
explain the motivation behind the composition. We conduct extensive experiments to show
that our proposed models can be seen as symbiotic compositions of two different generative
models: the two components in each composition help each other get rid of the limitations

Xiv



Figure 1: The landscape of deep generative modeling.

while keeping the advantages.
We hope that our findings may serve as a minor contribution to developing deep gener-

ative models.

XV



CHAPTER 1
INTRODUCTION

1.1 What are Generative Models?

The objective of this dissertation is to improve deep generative models. As such, a high-
level description of generative models is introduced. It begins with motivations for studying
generative models, followed by a formal statement of generative modeling and a comparison
with discriminative models.

The ability to imagine is one of the most distinctive and powerful aspects of human
cognition. Humans are able to synthesize mental objects which are not constrained by what
is presented in reality. There are many potential benefits of this capability. For example, it
allows humans to do planning by imagining how their actions could affect the outcome, and
by imagining an object, humans can learn about its properties without explicit supervision.
The sub-field of machine learning, which enables machines with this same essential capacity

to imagine and synthesize, is called generative modeling.

1.1.1 Generative Modeling: Motivations

There are many practical motivations for generative models. An obvious one is that they
can be used to generate new entities. Generating new samples that maintain characteristics
of given training samples is a valuable ability, and therefore generative models have been
applied to different domains [Karras et al., 2019, Van Den Oord et al., 2016, Dhariwal et al.,
2020, Devlin et al., 2018, Maziarka et al., 2020] as illustrated in Figure 1.1.

Besides the promising capability to generate new samples, there are other motivations for
studying generative models. One common argument is that one can use generative models
as a way of doing supervised and reinforcement learning with less labeled data. Children

can learn things, such as a new language, with relatively rare explicit supervised feedback or
1



Figure 1.1: Generative models can generate samples in various domain.

reward signals. An appealing hypothesis is that humans use unsupervised generative models
to build robust representations of the world and then use those same representations to do
supervised and reinforcement learning from small amounts of explicitly labeled data. Since
humans are constantly receiving perceptual data (sound, vision, touch), humans should have
enormous amounts of unlabeled data which can be used to train generative models, and it
is possible that learning generative models requires learning features that are also useful for
supervised learning. Indeed, in machine learning, generative models play an essential role
in facilitating supervised learning and reinforcement learning [Ha and Schmidhuber, 2018,
Kingma et al., 2014, Donahue et al., 2016].

Yet another practical motivation is that generative models can provide a powerful tool to
model arbitrary distributions. Directly training generative models on an unlabeled dataset
corresponds to modeling the marginal distribution of data (more details in the next section),
and the same idea can be extended to modeling other distributions. For example, generative
models can be used to facilitate Monte Carlo sampling by learning a proposal distribution
for importance sampling [Miiller et al., 2019] or learning more efficient transition kernels
for Markov Chain Monte Carlo [Song et al., 2017]. Generative models are also used to
approximate the complicated posterior distribution of inverse problems [Song et al., 2022,
Saharia et al., 2021b, Lugmayr et al., 2022] and simulation-based inference [Cranmer et al.,

2020, Papamakarios, 2019]. Indeed, it has been shown that specifically designed generative



models can learn arbitrary conditional distributions [Ivanov et al., 2019, Li et al., 2020].

Such flexibility gives generative models an extensive range of applications.

1.1.2  Generative Modeling: Formalizing the Problem

So far, we have discussed generative modeling in qualitative terms. It learns models which
can simulate the dynamics of the world, and models that can synthesize realistic-looking data.
However, before going further, it is useful to understand the probabilistic interpretation of
generative models and provide a a formal framework for their study.

The core idea behind generative models is that observations from the world are samples
from an underlying distribution x ~ p(x). For example, we can think of the distribution
over all possible human faces (which can be infinitely many) to be p(x), and each face is
a sample. If we have access to a set of faces, we may also choose to treat them as a finite
collection of samples from this distribution. Meanwhile, a generative model constructs a
distribution pg(x), which is described by a set of parameters 6. Then the task of generative
modeling can be framed as trying to ensure that pg(x) becomes as similar as possible to p(x).
Statistical divergences give a natural mathematical framework for measuring the similarity
between distributions.

In statistics and information geometry, a divergence is a function D(p||g) : S x S — R
taking two distributions p and ¢ over a space of distributions S as inputs, and returning a

scalar value. A divergence satisfies the following properties:
e Non-negativity: D(p||qg) > 0 for all p,q € S
e Identity of indiscernibles: D(p||q) = 0 if and only if p = ¢

Notably, there is no symmetry assumption, meaning that D(p||q) does not necessarily equal
to D(q||p). This property distinguish divergence from a metric. Formally, the probabilistic

approach to generative modeling frames learning as an optimization problem where the loss

3



corresponds to a given divergence:

L(0) = arg;nin D (p(x)]lpo(x)) - (1.1)

Deep Generative Models: In previous paragraphs, generative modeling is formulated
as learning a distribution that has a small divergence with the target distribution, from
which the training samples are drawn. However, the target distribution may be extremely
complicated (think about the ground truth distribution over all plausible human faces).
Unlike standard statistical inference where a mathematical expression for the distribution
is sought, typically, the goal of generative modeling on high dimensional space is to obtain
a generating function gy : R™ — R that maps samples from a tractable distribution Z
(called noise space) supported in R™ to points in R” with the same dimension as data.
The distribution constructed by the generative model pg(x) relies on the generating function
gp, and when gy is implemented by neural networks, the resulting generative model is a
deep generative model (DGM). In deep generative modeling, the py(x) is not necessarily a
distribution with closed-form density, and it can be defined implicitly with the generator gp.

In deep generative modeling, there is plenty of flexibility in choosing the form of gy. For
example, gy can either be an explicit mapping (in which case it is called a generator) or an
implicit iterative process. In addition, the dimension m of the noise space Z can generally

be different from the dimension of the data space n.

1.1.3 Generative Model vs. Discriminative Model

In traditional statistical learning, the generative model is a concept that usually comes to-
gether with the discriminative model. For completeness, a discussion on generative models

vs. discriminative models is included, which sheds additional light on explaining genera-



tive modeling. In statistical classification, two main approaches are called the generative

approach and the discriminative approach. Following Ng and Jordan [2001], Jebara [2012]:

e A generative model is a statistical model of the joint probability distribution p(x,y)

on given observable variable x and target variable y

e A discriminative model is a model of the conditional probability p(y|x) of the target

y, given an observation x

Note that since the target variable y is unobserved (except in training), typically it is called
a latent variable. In a classification task, the target variable y is the label associated with
the data sample x, but in general, the meaning of latent variables can be more complicated.
In the setting of learning classifiers, since the prior distribution p(y) over target variables
is relatively simple, the learning of a generative model p(x,y) is typically done by learning
conditional distribution p(x|y). After that, the marginal distribution p(x) over data can be

obtained by marginalizing out y:

p(x) = / p(x|y)p(y)dy,

Y

and the final classifier p(y|x) can be obtained through Bayes’ rule:

p(x|y)p(y) ‘

p(ylx) = ()

Therefore, generative models provide an alternative approach to inferring the target variable.
The generative approach has important advantages over the discriminative approach. One
noticeable advantage is that the generative approach is more robust, as it has uncertainty
estimates when making the decision. For example, consider a deep neural network that is
trained well to classify images into three categories (y € {cat, dog, horse}). However, as
pointed out by Szegedy et al. [2013], adding noise to images could result in a completely

5



+ =
e L | : - L
ply =cat|x) = 0.90 noise ply = cat|x) =0.05
p(y =dog|x)=0.05 p(y =dog|x)=0.05
ply = horse|x) =0.05 p(y = horse|x) =0.90

Figure 1.2: An example of adversarial attack: adding noise to an almost perfectly classified
image that results in a shift of predicted label.

false classification. An example of such a situation is presented in Figure 1.2 where adding
noise could shift predicted probabilities of labels, however, the visual semantics of the image
is barely changed.

This example indicates that discriminative neural networks may lack semantic under-
standing of images. A discriminative model assign classes merely based on decision bound-
aries, and therefore as long as x lies far away from the boundary, the decision is confident.
In contrast, generative models can assess uncertainty by incorporating the data probability
p(x). For example, assuming there is a well-trained generative model, the marginal likelihood
p(x) will be low after adding noise to the image, and hence the joint density p(x,y), which
can be factorized as p(y|x)p(x) should be low as well, and thus, the decision is uncertain.
Therefore, generative models are essential for building reliable models that not only learn

how to make decisions but also quantify their beliefs using the language of probability.

1.2 Important Concepts

In the following, some important concepts about generative models will be reviewed, as
they will be referred to frequently in the remaining of the dissertation. The review begins
by introducing two fundamental approaches for training generative models: the maximum
likelihood approach and the density ratio approach. Later, Langevin dynamics, an important

mathematical tool for sampling from an unnormalized distribution, will be discussed.



1.2.1  Mazimum Likelithood Approach for Training Generative Models

In the previous section, training of generative model was defined as finding a parameterized
distribution ppy(x) that minimizes a divergence between itself and target data distribution
p(x). One important component of training is to select an appropriate statistical divergence
for optimization. However, even before selecting the particular divergence, a question to
consider is what types of divergence we are able to optimize? Note that in general, the
form of the target distribution is unknown, and therefore the density of p(x) cannot be
computed. Typically, only a finite set of samples x ~ p(x) is accessible. Meanwhile, py(x) is
a model that we construct, so it is reasonable to assume that the density can be computed
and samples can be drawn from it.

The Kullback—Leibler (KL)-divergence is one candidate that satisfies the requirements.
It can be rewritten as an expression in which the only term that depends on the parameters is
an expectation over p(x). In other words, only samples from p(x) are needed for optimizing

the KL-divergence. Specifically, the KL-divergence is expressed as

zkmmwM@»=/mmewwx—/mmm@@mX (1.2)

= X) 10 @ X
- [ peo10s 25 (1.3
_ g 20
= Exp(x) {1 g q(x)} (1.4)
= IE’erp(x) [log p(x) — log g(x)]. (1.5)

In information theory, the first term Ex~yp log p(x) is the negative entropy of p(x):

Eyp(x) logp(x) = —H(p(x)),



and the second term —Ex~plogq(x) is the cross entropy between p and g¢:

—Expx) loga(x) = CE(p(x), q(x)).

Note that when ¢(x) is the generative model pg(x) and p(x) is the true data distribution, the
KL-divergence can be decomposed into a cross-entropy term and the entropy of data distri-
bution. Since the entropy term does not depend on #, the KL-divergence can be minimized
by minimizing the cross-entropy —Ex~plogpg(x). Furthermore, note that minimizing the
cross-entropy corresponds to maximizing the log-likelihood of the data x ~ p(x) under py.
Therefore, the generative model can be trained by maximizing the likelihood of the training
samples. As a by-product, the entropy of the true data distribution can be estimated by a
generative model if it maximizes likelihood.

Formally, given a set of i.i.d. training samples {x;,7 = 1,... N} from p(x), the ideal

parameter 0 satisfies

N
Ox = arg max Hpg (x;) (1.6)
1=1
N
= arg meaxz log py (x;) (1.7)
1=1
1 N
arg min - ; ogpy (x;) (1.8)
~ argmin By () [~ log pg(x)] (1.9)
= argmin Dy (p(x) Iy (<)) (1.10)

Therefore, training generative models by minimizing KL-divergence is equivalent to maxi-
mizing the likelihood of the training samples. Such a training approach is called maximum

likelihood training.



Maximum likelihood training only requires sampling uniformly from the real data and
evaluating the log-density of the model py(x). Some simple properties have to be satisfied
by pg in order to make a valid distribution. py(x) needs to be non-negative everywhere
and integrate to 1 over the region where its value is defined (called the support of the

distribution):

/ pp(x) = 1. (1.11)
xeR

Any parameterized family of functions that satisfies these properties can be used to define
pp(x) in maximum likelihood training. The most fundamental one is the Gaussian distribu-

tion, which has a density parameterized by 8 = {u, 02}

1 —(x — p)?
= e
po(x) =Py

The parameter p and o2 obtained from maximum likelihood training is simply the empirical
mean and empirical variance of the training data.

A major limitation of most closed-form densities, is that they are uni-modal, which makes
them ill-suited to problems where very distinct points can have high density with regions of
low density separating them. One straightforward way to get around these limitations is to
replace any density with a mixture over densities with distinct parameters. For example, a

Gaussian mixture model with C' components has the form

c
po(x) =Y g, (%),
=1

where each component pg, (x) is a Gaussian distribution and 7, is the corresponding weight.

This form is guaranteed to be normalized with the only condition being that the 7 sum



to 1. However, the maximum likelihood training of mixture models is more challenging, as
it becomes difficult to explicitly find the solution of parameters that maximize likelihood.
To get around this, the EM algorithm [Dempster et al., 1977], which is a special case of
optimizing the variational bound of the likelihood, needs to be applied.

Besides training simple models such as Gaussian and Gaussian mixture, maximum like-
lihood can be used to train a variety of advanced deep generative models. More details will

be presented in Chapter 2.

1.2.2  Density Ratio Approach for Training Generative Models

An alternative to the maximum likelihood approach involves studying the differences between

samples from a generative model model and real samples. In practice this usually takes the

form of estimating the density ratio ;)9 ((XX)) between the real data distribution p(x) and the

model distribution pg(x). The density ratio can be described in terms of the following

quantity
p(x)
Dy(x) = — L (1.12
%= 20 + 90 )
since 200 — Do) 1t o he shown that learning Dy(x) is equivalent to training a binary

po(x)  1-Dp(x)
classifier that discriminates between the real data and the model’s samples [Sugiyama et al.,

2012]. Specifically, a binary classifier D : R” — (0,1) minimizes the binary cross-entropy

loss

mDin _]EXNp(X) [log D(x)] — ]EXNpg(x) [log(1 — D(x))],

which corresponds to training the Bayes classifier under the assumption of equal prior prob-
ability on two classes. Methods for successfully training classifiers have been widely studied,

and inductive biases that are known to be good for classification could also be good for

10



determining the quality of generations. Another motivation for modeling the ratio between
a model and the data distribution is that it allows the model to become sensitive to any
clear difference between real samples and generated samples, which may be a much easier
task than simply determining the density of a distribution at a given point.

Next, two algorithms for training generative models with the density ratio idea are dis-
cussed.

Noise Contrastive Estimation: Gutmann and Hyvérinen [2012] proposed to estimate
the density ratio between the data distribution and a fixed model g(x) by the classifier trick
introduced above. Typically the fixed model is chosen to be a simple one such as Gaussian
noise distribution, so the method is called Noise Contrastive Estimation (NCE). Once the
quantity Dg(x) is learned, the density ratio serves as a re-weighting factor of the noise
distribution. Specifically, assuming Dy(x) accurately captures the quantity in Equation
1.12, then

) = TS

should be a distribution that is close to the data distribution p(x). Therefore, samples
generated by p(x) can be approximately seen as samples from p(x), and hence a successful
generative model is defined. Sampling from p(x) can be done by Sampling-Importance-
Resampling (SIR) or Markov chain Monte Carlo methods.

A significant limitation of NCE is that the noise distribution ¢(x) is required to be close
enough to the real data distribution. If ¢(x) has very small values where p(x) has large
values, Dg(x) will be close to 1 which leads to very large importance weights and high
variance sampling. Intuitively, when the classification between ¢(x) and p(x) is too easy, not
much information about the density ratio can be learned. In a high dimensional space like
image space, it would be extremely difficult to find a noise distribution that is close to the

data distribution, so the application of NCE is limited [Rhodes et al., 2020].
11



Generative Adversarial Networks: Generative Adversarial Networks (GANs) [Good-
fellow et al., 2014] aim to leverage the strengths of using a classifier for generation, while
avoiding the major weaknesses of NCE. Unlike NCE whose model ¢(x) is a fixed distri-
bution, GANs update the generative model together with the classifier in an alternating
fashion. The GAN framework approaches the generative modeling problem from a game
theory perspective, as it trains two networks in an adversarial fashion.

To describe the core idea of GANs in the context of NCE, the noise distribution ¢(x)
is replaced by a generator network Gy that is trained to produce samples which are similar
to the training examples by transforming latent variables z from a fixed noise distribution,
and the classifier D(x) plays a similar role as in NCE that is trained to classify between
examples from the training set and examples produced by the generator. The generator
is optimized to maximize the probability that the discriminator will classify the generated
example as “real”. This setup is described as adversarial because the loss for the generator is
the opposite of a term in the discriminator loss. Note that in GANs, the noise distribution is
defined implicitly through the generator network Gy. In other words, the noise distribution
does not have a parameterized density.

For the usual cross-entropy classification objective in NCE, denoting the classifier to be
D with parameter ¢, and assuming the latent variable z comes from a fixed noise distribution

po(z), the training of GANs can be written as
i V(Gy, Dy),
min mdz)mx (Gy, Dy)
where
V(G,D) = By, (ollog DX + By llogl — DG@)). (L13)

The generator cannot directly affect the log D(x) term, so for the generator, minimizing the

12



loss is equivalent to minimizing log(1 — D(G(2))).
A practical observation from Goodfellow et al. [2014] is that directly optimizing the
generator network to minimize the loss leads to poor performance due to saturated gradients.

In practice, a non-saturating objective is often used, where the generator is updated by
max Eyq(z)ll0g D(Gy(2))]- (1.14)

The above paragraphs provide a high-level overview of the core idea behind GANs. More

details about GANs will be discussed in Chapter 2.5.

1.2.8  Langevin Dynamaics

The analytically intractable expectations involved in the learning of some generative models
may be approximated by various forms of Markov chain Monte Carlo (MCMC) sampling. A
simple realization of MCMC is in the form of the Langevin dynamics.

The story of Langevin dynamics began in 1827, when Robert Brown, an English botanist
was looking at pollen grains in water and observed them moving around randomly. Many
years later, Albert Einstein wrote a paper explaining the pollen’s motion which is caused by
random impacts of the water molecules on the pollen grain. Such a motion is called Brownian
Motion [Einstein, 1905]. Einstein’s explanation was later conceptualized by Adriaan Fokker
and Max Planck and resulted in the Fokker-Planck equation. Meanwhile, Paul Langevin, a
French physicist wrote a different formulation of Brownian motion (see English translation
[Lemons and Gythiel, 1997]), which resulted in the Langevin equation. Langevin dynamics
was popularized in the statistics literature in the early '90s in [Amit et al., 1991], and was

introduced in the deep learning literature in [Welling and Teh, 2011].

13



Consider the diffusion Xy defined by the (overdamped) Langevin equation

dX; = Vf(Xy)dt + V2T dwy, (1.15)

where f is a given energy function, T is the chosen temperature parameter, and w; is a Wiener
process with mean 0 and variance dt. Under some mild conditions, particles simulated by

Equation 1.15 are samples from the Boltzmann distribution with density

m(x) o< exp(f(z)/T), (1.16)

which is the stationary distribution of the continuous time Markov Chain in Equation 1.15.
The simulation of the Langevin equation by digital computers requires discretization.

Equation 1.15 can be discretized as

Xt-f—At = Xt + Vf (Xt) At + v ZTAtEt, (].].7)

where ¢ ~ N(0,I). The discretized Langevin dynamics in Equation 1.17 can be used to
sample from distributions p(x) by iterating with infinitesimally small A¢ and infinite many
steps, as long as Vxlogp(x) is known. This means that the density does not need to be
normalized, as the normalizing constant is independent of x so its gradient w.r.t x is 0.
Sampling with Langevin dynamics has a gradient ascent interpretation. Given an initial
point xg, the point of maximum probability can be reached by running gradient ascent

following the gradient of the log-density:

X1 = X+ Vxlogp (xi),

14



where a4 is the step size. By further adding an appropriate amount of noise at each step:

Xpi1 = Xp + Vxlogp (xg) + V2ae, e ~N(0,1), (1.18)

a sample from the distribution is generated. The intuition is that by following the gradient,
the point reaches high probability regions, but the noise ensures it would not just reach the
maximum. Strictly speaking, the convergence of Langevin relies on a Metropolis-Hastings
accept /reject step, which depends on the true probability distribution. However, for a suffi-
ciently small step size this is not necessary in practice, because as the step size goes to zero,

the probability of acceptance of goes to 1 [Neal, 1993].

1.2.4  FEvaluation of Generative Models

It is straightforward to evaluate regressors and classifiers, as typically there is a test dataset
on which the same task for training can be used to evaluate the models’ performance. How-
ever, assessing generative models can be much more difficult. In this section, several common
methods for evaluating generative models are introduced, and they will be used to evaluate
the models discussed in later chapters.

Test data likelihood: Under the maximum likelihood training approach, a straight-
forward way of quantifying the performance of the model is to compute the model’s average
likelihood py(x) on the test dataset. Test data likelihood can be useful for detecting overfit-
ting and it is easy to compute. However, it has several limitations. For generative models
not trained by maximum likelihood, the likelihood may not be easy to compute. More im-
portantly, the implication of test data likelihood is not clear: there’s no clue suggesting that
higher likelihood on test data leads to better sample quality or better learned representations.
Therefore, although test data likelihood is widely used for assessing models trained by max-

imum likelihood, alternative criteria that are agnostic to the actual form of the generative

15



model and can directly judge the sample quality are needed.
Inception Score: Inception Score (IS) [Salimans et al., 2016] uses a fixed pre-trained

classifier as the basis for the scoring metric. It is defined by

exp By (o) DL ) P(Y))) (1.19)

where x is a sample from the generative model, p(y|x) is the categorical distribution for labels
y conditional on x given by a pre-trained classifier, and p(y) is the marginal distribution of
the labels in the generated samples according to the classifier. Higher scores imply better
generation quality. The intuition behind IS is that a generative model should produce
diverse samples from different classes while ensuring that each sample is clearly identifiable
as belonging to a single class. For example, if a model can only generate samples from a
single class, the IS will be low because p(y|x) and p(y) are similar (both will concentrate
on the single class). Likewise producing blurry samples which do not allow the classifier to
make a clear decision will make p(y|x) uncertain and more similar to p(y).

While IS has been shown to be correlated well to visual quality, there are several limita-
tions. One is that IS could be fooled by a model which produces only a single and clearly
identifiable example of each class that the classifier is aware of. This would make p(y|x)
different from p(y) while maintaining high entropy in p(y). Another issue is that it is un-
clear how accurate the metric is on datasets other than ImageNet, which is the dataset on
which the classifier is pre-trained Barratt and Sharma [2018]. In addition, IS cannot be used
to judge the sample quality on datasets where there’s no clear label, such as the CelebA
dataset.

Frechet Inception Distance: Similar to Inception Score, Frechet Inception Distance
(FID) [Heusel et al., 2017] assesses generated samples using a pre-trained classifier. However,
instead of relying on the classification head of the classifier, FID only uses the intermediate

features extracted by the classifier, making it generalize well to different datasets. The key

16



idea is that the score is high when the distribution of the extracted features for generated
samples is close to the distribution of features for real data points. It assumes that these
features follow a multivariate Gaussian distribution (with a full covariance matrix). Because
the features are from the end of a deep classifier, this multivariate Gaussian assumption
is much more justified than it would be in the pixel space. To compute the FID score, a
Gaussian distribution N (pg, Xg) is fitted to features extracted from generated samples, and
another Gaussian N (ur, Xr) is fitted to features extracted from real samples. From this, the

Frechet Distance between these two Gaussians is computed:
2 1/2
i = g3 + T (30 + 29 — 2 (55) ?). (1.20)

A smaller FID score implies the set of generated samples is close to the training set, suggesting
better sample quality. FID has several advantages over IS. FID can be evaluated on the test
data, so it can directly test against overfitting, unlike IS. Moreover, generating a single high-
quality example for each class will lead to low FID by giving the features of the generated
samples an unnatural distribution. FID is currently the most widely used metric for sample
quality, and finding better evaluation criteria for generative models is an ongoing research

direction.

1.3 High-level Overview of Proposed Methods

This dissertation includes a sequence of methods for designing deep generative models. In
this section, a high-level overview of each proposed method will be given to guide readers

through the major content of the dissertation.

17



1.3.1 Flexible Prior of Auto-encoder Models

Many deep generative models are developed based on the idea of auto-encoding. The idea
is that an auto-encoder extracts low dimensional representations on data by enforcing the
reconstruction while passing through a bottleneck structure. The resulting representation
at the bottleneck can be treated as a latent variable that contains information that can be
decoded into a sample. By encouraging the distribution of latent variables to be close to
a parametric distribution (which is called the prior distribution), it is possible to generate
unseen samples by sampling latent variables from the prior and passing them through the
decoder. Earlier methods let the prior be a simple noise distribution such as N(0, I), how-
ever, it is difficult to learn useful representations while enforcing the latent variables to be
uninformative. As a result, after training, the gap between the distribution of the latent
variables and the prior is large. This leads to poor sample quality when generating samples
by drawing from the prior.

One method to overcome the issue is introducing a more flexible prior distribution that
can better match the latent distribution. We developed an auto-encoder based generative
model called Generative Latent Flow (GLF), which models the prior by normalizing flows. In
contrast to some other auto-encoder based generative models, which use various regularizers
that encourage the encoded latent distribution to match the prior distribution, our prior
normalizing flow explicitly constructs a mapping between these two distributions, leading
to better density matching while avoiding over regularizing the latent variables. The model
is compared with several related techniques using flexible prior distributions and we show
that it has many relative advantages including fast convergence, single-stage training, and
minimal reconstruction trade-off. We also study the relationship between the model and its
stochastic counterpart and show that our model can be viewed as a vanishing noise limit of

VAEs with flow prior.

18



1.3.2  FExponential Tilting of Generative Models

Generator models such as variational auto-encoders (VAEs) and normalizing flows can gen-
erate samples quickly and are equipped with a latent space that enables fast traversal of the
data manifold. However, they tend to assign high probability density to regions in data space
outside the actual data distribution and often fail at generating sharp images. One possible
reason is that maximum likelihood training, which minimizes the forward KL-divergence
between the model distribution and the data distribution, will enforce the model density to
spread out and cover all the modes of the data distribution. However, since the capacity
of the generative model is limited by the constrained structure and network size, spreading
over the support of data distribution will result in an unwanted mismatch between the two
distributions.

Energy-based models (EBMs) have recently been shown to suffer less from the issue
mentioned above, as the maximum likelihood training of EBMs involves explicitly reduc-
ing the density of non-data regions. However, training EBMs with maximum likelihood
requires sampling from the model, which further requires expensive Markov chain Monte
Carlo (MCMC) iterations that mix slowly in high dimensional pixel space. Therefore, the
training of EBMs is difficult.

To address the issues of both generator models and EBMs, we propose to design new
generative models based on exponential tilting. Specifically, we design generative models
whose distribution is composed of the normalized density of a generator model multiplied
by the unnormalized density of an EBM. The resulting model can be seen as an exponential
tilting of the generator model. Such a formulation has several benefits. The generator model,
which is relatively easy to train, captures the overall mode structure of the data distribution
and, it relies on its exponential tilting component to explicitly exclude non-data-like regions
from the model and hence refine the samples. Moreover, the uninformative latent space of the

generator model will provide a smooth geometry for the joint density and speeds up MCMC

19



updates by reparameterization. Based on the properties of resulting generative models, we
also propose a novel two-stage training strategy where the generator model is trained first,
and the EBM is trained later with the generator fixed. Such a strategy significantly simplifies
the training, as each update of the EBM is very expensive, and with a pre-trained generator
that roughly captures the target distribution, only a small number of training steps is needed

for the EBM.

1.3.8 EBMs with short-run Langevin Dynamics as Generator Models

Among a variety of methods that can be used to train EBMs, maximum likelihood train-
ing is the most popular one. However, applying maximum likelihood training to EBMs is
less straightforward. Although an EBM has a parameterized explicit density function, the
unknown normalizing constant is intractable to estimate. Mathematically, the gradient of
the log-likelihood of an EBM can be written in a form that involves an expectation over the
model distribution. In other words, Estimating the gradient for maximum likelihood training
requires sampling from the EBM. As discussed in Chapter 1.2.3, sampling from an unnor-
malized EBM requires running the Langevin dynamics. In theory, the Langevin dynamics
requires infinite many steps and diminishing step size to ensure convergence, which is cer-
tainly not feasible. In practice, the Langevin dynamics are replaced by short-run Langevin
dynamics, which only iterate for a finite number of steps and constant step size.

We provide an alternative understanding of training EBMs with short-run Langevin
dynamics. We observe that short-run Langevin dynamics behave more like generators that
transform the initial noise into a sample. We further try to understand the training procedure
by replacing short-run Langevin dynamics with deterministic solutions of the associated
gradient descent ODE. Doing so allows us to study the density induced by the dynamics,
as now the transformation is noise-free and invertible. In addition, we connect with GANs

by treating the dynamics as generator models, the initial values as latent variables, and the

20



loss as optimizing a critic defined by the very same energy that determines the generator
through its gradient. With such a connection, we treat EBMs as a special case of Wasserstein
GANs [Arjovsky et al., 2017], where the generator is replaced by a deterministic iterative
transformation. We also explore the possibility of training the implicit generator with the

W-GAN loss by back-propagating through the iterative sampling process.

1.8.4 Denoising Diffusion GANs: Expressive Denoising Distribution in

Diffusion Models

A forward discrete-time diffusion process gradually perturbs data samples into white noise
step by step by adding a small amount of noise at every step. The resulting process is a
Markov process with Gaussian transition kernels. A denoising diffusion model is a generative
model that tries to recover the forward diffusion process by iteratively denoising white noises
into clean samples. Ideally, the model should be trained to match the ground truth per-step
denoising distribution. However, such a distribution is intractable, and instead, the model is
trained to match the per-step posterior distribution conditioned on the initial point. Since the
posterior distribution is a Gaussian, the denoising model is also parametrized as a Gaussian
distribution.

One major drawback of denoising diffusion models is that it requires a large number of
denoising steps to generate samples, which makes them difficult to apply in many real-world
applications. We investigate the slow sampling issue of denoising diffusion models and argue
that it is fundamentally attributed to the Gaussian assumption in the denoising step men-
tioned above. The Gaussian denoising step assumption is justified only for small step sizes.
To enable denoising with large steps, and hence, to reduce the total number of denoising
steps, we propose to model the denoising distribution using a complex multi-modal distribu-
tion. We introduce denoising diffusion generative adversarial networks (denoising diffusion

GANSs) that model each denoising step using a multi-modal conditional GAN. Similar to de-

21



noising diffusion models, the GAN models the denoising distribution by generating a sample
of single-step denoising conditioned on the noisy sample, and the generation is judged by
the discriminator. With such a flexible denoising distribution, the number of denoising steps
can be reduced to as low as 4, which is a 1000x speed-up compared to traditional denoising

diffusion models.

1.4 Organization

The manuscript follows the journey of conducted research toward designing generative mod-
els with the core idea of symbiotic composition. Specifically, different generative learning
frameworks are combined together to make a stronger generative model. The remainder of
the dissertation is organized as follows.

To better understand the motivation behind the composition approach, in Chapter 2, a
comparative review of existing deep generative models will be provided. For each type of
generative model that is reviewed, its mathematical formulation, history of development, and
recent advances will be discussed. Towards the end of Chapter 2, the pros and cons of differ-
ent generative models will be compared, which leads to the motivation of our compositional
approach.

In Chapter 3, 4, 5, and 6, research projects outlined in Chapter 1.3 will be presented in
detail. Each chapter will begin with the motivation of the proposed approach, followed by
the model specification and derivation. Related work will be discussed to better position
our method with contemporary work, and extensive experimental results will be presented
to show the effectiveness.

In Chapter 7, a conclusion of the dissertation, as well as a discussion on future work will

be provided.

22



CHAPTER 2
A COMPARATIVE REVIEW OF DEEP GENERATIVE
MODELS

This dissertation will introduce several novel deep generative models by combining existing
generative learning frameworks. To better understand the motivation and formulation of
each proposed model, it is important to review existing deep generative models. In this
chapter, several popular deep generative models will be introduced in detail. Towards the
end of this chapter, those models will be compared against each other, highlighting the
motivation for designing a compositional approach. We roughly categorize deep generative
models into two types: explicit models and implicit models. Explicit models refer to those
who have an explicit parameterized density, and the training is often done by maximizing
the likelihood as introduced in Section 1.2.1. In contrast, implicit models do not have an
explicit form of the density, and hence the distribution is defined implicitly through the
sample generation process. As a result, alternative training approaches, such as the density
ratio trick, introduced in 1.2.2, are needed to train implicit models.

A list of deep generative models that will be covered in this chapter is
e Explicit models

1. Variational Auto-encoders (in Section 2.1)
2. Normalizing Flows (in Section 2.2)
3. Energy-based Models (in Section 2.3)

4. Denoising Diffusion Models (in Section 2.4)
e Implicit models

1. Generative Adversarial Networks (in Section 2.5)

23



2.1 Variational Auto-encoders

The framework of Variational Auto-encoders (VAEs) [Kingma and Welling, 2013, Rezende
et al., 2014] provides a principled method for jointly learning deep latent-variable generative
models and inference models using gradient-based optimization. A VAE can be viewed
as a combination of two coupled models: an encoder or recognition model, and a decoder
or generative model. VAEs can be understood from different points of view. From the
perspective of deep learning, VAEs can be seen as a generative version of plain Auto-encoders
(AEs) whose goal is to reconstruct data. From the perspective of statistics, VAEs are a tool
to perform efficient posterior inference on complicated latent variable models. In order to
give a comprehensive introduction to VAEs, we first provide a brief review of preliminary
knowledge on deep latent variable models, followed by the formulation of VAEs. Later, some
limitations of VAEs will be discussed, and hierarchical VAEs, an important extension of VAE

models, will be introduced.

2.1.1 Preliminaries

Assuming the observed variable x is a random sample from an unknown underlying process
whose true distribution p(x) is unknown. We attempt to approximate this underlying process
with py(x). Learning corresponds to searching for a value of the parameters 6 such that the
distribution given by the model py(x) approximates the true distribution of the data p(x)
over a collected dataset D = {X(l),X(2), - ,X(N )}. Unlike observable variables x, latent
variables are variables that are part of the model, but which we cannot observe, and are
therefore not part of the dataset. Typically, latent variables are denoted by z. When we
take latent variables z into consideration, the model represents a joint distribution py(x,z)

over both the observed variables x and the latent variables z. The marginal distribution

24



over the observed variables x can be obtained by marginalizing out z:

pox) = [ ol )i 2.1)

As a simple example, if z is a discrete categorical random variable, and the conditional distri-
bution py(x|z) is a Gaussian, then py(x) is a Gaussian mixture distribution. For continuous
z, pp(x) can be seen as an infinite mixture.

The term Deep Latent Variable Models (DLVM) is used to describe a latent variable
model py(x) that is parameterized by neural networks. One advantage of DLVMs is their
flexibility: even if each component in the joint distribution (such as the prior or condi-
tional distribution) has a simple form, the resulting marginal distribution pg(x) can be very
complex. The flexibility makes DLVMs attractive for modeling complicated underlying dis-
tributions p(x). One simple and common way to factorize a DLVM is given by the following

structure:

py(x) = pg(x|2)pe(2), (2.2)

where py(x|z) is the conditional distribution and py(z) is called the prior distribution over
z. Since the prior distribution typically does not have trainable parameters, usually it is
denoted as p(z).

Since we have an explicit density of DLVMSs given in Equation 2.1, it is tempting to train
DLVMs by maximum likelihood. However, one major challenge of maximum likelihood learn-
ing in DLVMs is that the marginal probability of the data is typically intractable. In high
dimensional space, the integral in Equation 2.1 usually does not have an analytic solution or
efficient estimator. Due to this intractability, we cannot differentiate it w.r.t. its parameters

and optimize it. The intractability also implies an intractable posterior distribution, which

25



1s written as

Pg (Xv Z)

o) (2.3)

py(zlx) =

The expression py(x,z) is easy to compute (it is assumed to be factorized into a simple
form), but the intractable py(x) makes the posterior also intractable. This makes posterior
inference, which aims to infer the latent variable z given observation x, difficult. Tradi-
tional inference methods can be relatively expensive, as they often require a per-datapoint

optimization loop, or yield bad posterior approximations.

2.1.2  Formulation of VAEs

In the previous chapter, we introduced deep latent-variable models (DLVMs), and the in-
tractability problem of estimating the marginal and posterior distributions. The framework
of Variational Auto-encoders (VAEs) provides a computationally efficient way to overcome
the issue of intractability and optimize DLVMs. The core idea that turns the DLVM’s in-
tractable posterior inference and learning problems into tractable problems is introducing a
parametric inference model gy (z|x). The inference model is called an encoder. The goal of

the inference model is to be as close to the true posterior as possible:

49(2[%) ~ pp(2|x). (2:4)

The inference model is parameterized by a neural network with parameter ¢, and the distri-
bution g4(z|x) is chosen to be a tractable one. One important point is that we use a single
encoder neural network to perform posterior inference over all of the samples in the dataset.
This is the major difference when compared to more traditional variational inference methods
where the variational parameters are not shared, but instead separately optimized for each
sample. Such a strategy for sharing parameters for posterior inference is called amortized

26



inference [Gershman and Goodman, 2014].

The introduction of a parameterized inference model gg(z|x) allows us to obtain a
tractable lower bound on the marginal data log-likelihood log py(x), and hence we can op-
timize such a lower bound as a proxy for optimizing the data likelihood. The lower bound
is called the variational lower bound or evidence lower bound, abbreviated as ELBO. Below
we will provide two different approaches to derive ELBO. In the first approach, the ELBO

is derived through Jensen’s inequality, saying that given a random variable X and a convex

function f, we have

The derivation is given as follows. For any distribution on z, and in particular any parame-

FE(X)) < E(f(X)).

terized inference model g4 (z[x), we have

log pp(x) = log / po(x|z)p(z)dz

zlog/

=logE

>E

— Zr\zq¢

=B,y (alx) [l0g Pp(x]2) +log p(z) — log q4(z[x)]

= Ez~q¢(z|x) log pg(x|z)] — Ez~q¢(z|x) [log qp(z]x) — log p(z)] .

Jensen’s inequality is used in the fourth line. Note that the second term in the final Equation

q¢(2]x)

q¢(2]x)

zrqy(2[x)

(zx) 108

py(x[2)p(z)dz

2.6 corresponds to a KL-divergence term:

E, g ap) [108 a6(2l) — 105 p(2)] = Dt (45(2}) [p(z)).

27




As it is a lower bound of the marginal data log likelihood log py(x), the expression in Equation
2.6 is the ELBO, denoted by Ly 4(x):

Ly,6(%) = Egg, (a)x) 108 po(x[2)] — Dkr(44(2|%)|[p(2)). (2.8)

An alternative derivation of the ELBO is also provided. It will help us to understand the
gap between ELBO and the exact marginal log likelihood of data. Again, given any g4 (z|x),

we have

log py(x) = IEzqu,(z|x) [log p(X)]

= Bygy(2lx) :1 )Zigx ]
=Ey g, (zlx) :1 & X'Zﬁgz }
= By (2lx) :10g pg(X‘ZI)ﬁgz Zﬁ ]
= Bopgy (alx) _1ng9(x| ) p(<zl)><) Zﬁgi:;
44(2]x) qp(2[x)

= EZ~q¢(z|x) _IOgPG(X’Z) — log W + log m}

= By (zx) 108 po (x[2)] — D1 (44(21%)[p(2)) + Dkr(g6(2[%)llpo(zlx)).  (2.9)

Comparing Equation 2.9 with Equation 2.8, we obtain the following relationship:

log pg(x) = Lg,¢(x) + Dkr(qg(2%)[pe(2]%)), (2.10)

and by the properties of KL-divergence, we know that the ELBO is a lower bound on
log py(x), and the gap between the ELBO and log py(x) (which is called the tightness of the
bound) is 0 if and only if gy(z|x) = py(z|x), i.e., the parameterized inference model exactly
matches the ground truth posterior.

28



Equation 2.10 tells us that by maximize the ELBO w.r.t. § and ¢, we are

1. Approximately maximizing the marginal log likelihood log pg(x), which means that we

are doing maximum likelihood training.

2. Minimizing Dgr,(q4(2[%)||lpg(z[x)), which closes the gap between true posterior and

the parameterized inference model.

2.1.3 Parameterization and Optimization

Parameterization of distributions in the VAE model: We need to find appropriate
parameterization for the prior distribution p(z), the encoder distribution gg(z[x) and the
decoder distribution py(x|z). While there are multiple ways to define these distributions,
and the definition depends on the data type (e.g., discrete or continuous), we will only discuss

the most common parameterization assuming both x and z are continuous random variables.

e Decoder distribution py(x|z). When dealing with continuous data, the decoder distri-
bution is usually chosen to be a factorized Gaussian. For example, if x represents an
image, then each pixel in x follows an independent Gaussian distribution. Specifically,

given the decoder network Gy, py(x|z) is parameterized by

po(x|z) = N'(x; Gy(z), o°1). (2.11)

Note that typically the variance o2 is fixed and shared across all dimensions, although

there are exceptions such as Dai and Wipf [2019], Vahdat and Kautz [2020].

e Prior distribution p(z). The prior distribution is usually chosen to be a simple noise
distribution that is easy to sample from. One common choice is N(x;0,7). More

flexible priors with learnable distribution will be discussed in Chapter 3.

29



e Encoder distribution gy(z[x). The most common way to parameterize this is as a
Gaussian distribution with diagonal variance. Specifically, given an encoder network

Ey,

(1, log o) = Ey(x)

q4(z|x) = N(z; 1, diag(o)).

Training objective: As discussed previously, the training objective of the VAE model

is to maximize the ELBO in Equation 2.8, which is equivalent to

Iggl —L,6(x) = —Egog, (a)x) 108 po(x[2)] + Dxr, (g (2[x)[p(2)). (2.12)

Given the specific parameterization of distributions discussed above, the first term corre-

sponds to the negative Gaussian log likelihood of x:

1
_Ez~q¢(z|x) [lngg(X’Z)] = ﬁ”x - GG(Z>H27 (2'13>

which corresponds to an L9 reconstruction error. The second term is the KL-divergence
between the encoder distribution and the prior. If the common parameterization of these
two distributions is used, then the KL-divergence can be expressed in an analytical form.
In the general case, the KL-divergence can be approximated by Monte Carlo samples from

qe(z|x). The training objective of VAEs seeks a balance between
1. Enforcing reconstruction on x by minimizing the reconstruction loss, and
2. Regularizing ¢,4(z|x) towards uninformative prior p(z).

Training 6 is relatively easy, as the gradient of both terms in Equation 2.12 can be
approximated by a batch of samples from q¢(z|x). However, there is a subtle thing when

30



trying to train ¢: the gradient is hard to compute as it is not trivial to differentiate through
the sampling process that is used to approximate the expectation. Fortunately, for continuous
z, we can use the reparameterization trick to overcome the challenge.
Reparameterization Trick: The ELBO can be differentiated w.r.t both 6 and ¢
through a change of variables, also called the reparameterization trick introduced by Kingma
and Welling [2013], Rezende et al. [2014]. The trick is to ’externalize’ the randomness in z by
re-parameterizing the variable as a deterministic and differentiable function of an external
variable. Specifically, we express the random variable z ~ q¢(z\x) as some differentiable
(and invertible) transformation of another random variable € ~ pg(€) that is absolutely inde-
pendent of x or ¢. In other words, denoting the transformation as r, we can draw a sample
from q4(z|x) by z = r(€, ¢,z). Given such a change of variable, expectations of a function f

over qy(z|x) can be rewritten in terms of e:

By (zlx) [f(2)] = Epo)[f (2)], (2.14)

where z = r(e,¢,z). Then, using the fact that the expectation and gradient operators

become commutative, we have

V¢Eq¢(z‘x) [f(Z)] = quEp(e) [f(Z)]
= ]Ep(e) [Vﬁbf(z)}
= ]Ep(e) [V¢f(7”(€, ?, Z))} ) (2.15)

which can be approximated by samples from pg(e).
When g4(z|x) has the diagonal Gaussian parameterization, we can define the transfor-

mation 7 by the shift and scale of the Gaussian, and let e ~ N(0, I):

Z=u+oOeE,

31



where (1,log o) = Ey(x).

2.1.4 Typical issues with VAEs

VAEs are a very powerful class of models, mainly due to their flexibility. However, they also
suffer from several issues. Here we would discuss two major issues of VAEs: the posterior
collapse and the prior hole problem.

Posterior collapse: Recall that the ELBO can be decomposed into a reconstruction
term and a KL regularization term. For a non-trainable prior like the standard Gaussian,
the regularization term will be minimized if ¢,4(z|x) = p(z) for all x. It is possible with a
strong decoder that the model may treat z as noise and reach an equilibrium state, where
qy(z|x) =~ p(z) for all x, that is hard to escape. This issue is known as the posterior
collapse, which is typical when the VAE is trained on sequence data, due to the powerful
auto-regressive decoder. One possible solution is proposed in Bowman et al. [2015], Sgnderby
et al. [2016], where the weight of the KL-regularization term is slowly annealed from 0 to 1
over the training.

Prior hole: Another issue is caused by the mismatch between the aggregated posterior

Q¢<Z) = EXNp(X) [Q¢<Z|X)]

and the prior p(z). Note that the aggregated posterior can be seen as the empirical marginal
distribution of the latent variables assuming ¢(z|x) is the true conditional distribution. Note
that new samples from a VAE are generated by sending a sample from the prior distribution
to the decoder. Therefore, in order for VAEs to generate realistic samples, the aggregated
posterior should match the prior distribution. However, it is observed that there are regions
where there prior assigns high probability, but the aggregated posterior assigns low proba-

bility, or the other way around. Then, sampling from these holes provides unrealistic latent

32



values and the decoder produces images of very low quality. This problem is referred to as
the hole problem. Such a problem can be resolved by introducing a flexible and trainable

prior, which is studied comprehensively in Chapter 3.

2.1.5 Hierarchical VAFEs

There are many extensions of the VAE model that aim to improve the performance of
generative modeling. Among them, the idea of hierarchical VAEs is an important one.
Simple VAEs have only one level of latent variables, namely we assume all latent variables
are directly dependent on data x. Such a model may not be able to model a hierarchy of
abstraction levels. For example, when we infer latent variables from an image of a human
face, we may want the latent variables to capture not only low-level information such as
skin color, hair color, and size of eyes but also high-level information such as the overall
structure of the face. The information corresponds to a different level of abstraction, and
it may be difficult to model all latent variables in a single level. As a result, hierarchical
VAEs are introduced to increase the expressiveness of both the variational posterior and prior
by partitioning the latent variables into disjoint groups z = {z1,29,...,2z} and designing
conditional dependencies between them.

There are multiple ways to design the factorization. For example, when we assume

z = {z1,2z2}, the generative model can be factorized as

po(x,2) = pg (x|21) pg (21]22) p (22) , (2.16)

where we have a unit Gaussian prior on zy, and py (z1]z2) is a conditional Gaussian. The

variational posterior can be factorized in multiple ways. Given the generative model in

33



Equation 2.16, we want write the variational posterior as either

04 (2[x) = q4(211%)q4 (22|21, %)

or

¢ (2]x) = qy(22]%)qy (21|22, %).

The former is called a bottom-up inference model, and the latter is called a top-down in-
ference model. It has been shown that it is advantageous to follow the top-down approach
[Kingma et al., 2016, Salimans, 2016], which lets the generative model and inference model
share the topological ordering of latent variables. One advantage of shared ordering is that
this allows us to easily share parameters between the inference and generative models, leading
to faster learning and better solutions.

Multiple hierarchical VAE models are proposed based on top-down inference. The idea
was initially proposed by Kingma et al. [2016], Senderby et al. [2016], and further developed
by Maalge et al. [2019]. Recently, large VAEs with very deep latent structure [Vahdat
and Kautz, 2020, Child, 2021] achieve the best performance on likelihood modeling among
VAEs. These approaches differ in their implementations and parameterizations used (i.e.,
architectures of DNNs), however, they all could be categorized as instantiations of top-down

hierarchical VAEs.

2.2 Normalizing Flows

The search for probabilistic models that correctly describe the underlying processes that pro-
duce data is one of the enduring objectives of statistics and machine learning. Here we will
discuss a straightforward way to address this need: building probability distributions as nor-

malizing flows. Normalizing flows provide a general mechanism for constructing expressive

34



probability distributions, only requiring the specification of a simple base distribution and a
series of simple invertible transformations. Normalizing flows work by transforming a simple
density through a series of transformations to produce a more complex and multi-modal
distribution. The core idea is that repeated application of even simple transformations to
a unimodal base density leads to a distribution of high complexity. Such a property makes
normalizing flows useful in some key tasks in statistics such as modeling, inference, and
simulation.

We will first give a brief historical overview of normalizing flows. The idea of whitening,
which means transforming data into white noise through a deterministic transformation,
has been discussed in early literature such as Johnson [1966] as a feature pre-processing
tool. Chen and Gopinath [2000] use the whitening idea as a density estimation technique,
similar to the purpose of modern normalizing flows. Their method is named Gaussianization.
Tabak and Turner [2013] first introduces the concept of normalizing flows, describing the
flow as a composition of simple mappings. Such a composition is essential for ensuring
expressivity while preserving computational tractability. Rippel and Adams [2013] connects
the idea of normalizing flows to deep learning by parameterizing flows with deep neural
networks. Rezende and Mohamed [2015] used the idea and language from Tabak and Turner
[2013] to apply normalizing flows in variational inference, making the variational posterior
of VAEs more expressive. A series of works explore the parameterization of normalizing
flows and introduce a scalable and computationally efficient architecture [Dinh et al., 2014,
2016, Kingma and Dhariwal, 2018], demonstrating further improvements to modeling and
inference. They will be reviewed in this chapter.

In the following, we will first introduce the mathematical formulation of normalizing
flows, followed by several important flow parameterizations. Applications of normalizing

flows and their limitations will be discussed towards the end.

35



2.2.1 Fundamentals of Normalizing Flows

We begin by outlining basic definitions and properties of normalizing flows. Normalizing
flows provide a general way of constructing flexible probability distributions over continuous
random variables. Let x be the random variable we are interested in modeling. The main
idea of flow-based modeling is to express x as an invertible transformation 7" of a sample z

from a base distribution pg(z):

x =T(z), z~ py(z). (2.17)

Note that in comparing this with the formulation of latent variable models, it is tempting to
call pg(z) the prior distribution and z the latent variable, but this terminology is not well-
suited for normalizing flows, as given observable variable x, z can be uniquely determined
by z = Tfl(x), and hence z is no longer ’'latent’. As a result, we refer to pg as the base
distribution.

To make a normalizing flow model, the transformation 7" must be bijective (or invertible),
and both T and 71 must be differentiable. Note that these requirements imply that z must
have the same dimension as x. A transformation 7" that satisfies such properties is called a
diffeomorphism. When 7' is a diffeomorphism, the density of x is well-defined and can be

obtained by change-of-variables. Specifically, we have

p(x) = po(z) |det Jp(z)| !, (2.18)

where z = T71(x) and the Jacobian Jp(z) is the D x D matrix (assuming z and z are both

36



in RP ) of all partial derivatives of T evaluated at z:

Z1 ZD

Jr(z)=1| + . . (2.19)
ofp . 9Tp
21 Jzp

Equivalently, p(x) can be written in a form that only involves x:

p(x) = po(T~ 1 (x)) |det Jp-1(x)

: (2.20)

due to the inverse function theorem saying that if 7-! is continuously differentiable and

2 =T (x),

Jp-1(x) = Jp(z) ", (2.21)

and the property of determinants that det A=1 = F%A for any invertible matrix A. In

practice, we often construct a flow-based model by implementing 7" with a neural network
and taking pg to be a simple distribution such as unit Gaussian. Intuitively, we can think
of the transformation 7" as warping the space in order to push the density py(z) into p(x),
and the absolute value of the Jacobian determinant term quantifies the relative change of
volume caused by applying 7.

An important property of invertible and differentiable transformations is that they are
composable. Specifically, the composition of two such transformations 77 and 75 is also
invertible and differentiable. The inverse and determinant of Jacboian of the composition

can be expressed as

(TyoTy) ' =T o7yt (2.22)
det Jr,0r, (2) = det J;, (T1(2)) - det J, (2). (2.23)

37



Figure 2.1: Illustration of a normalizing flow model, transforming a simple distribution pg
to a complex one through composition of transformations.

The second equation is due to the property of the Jacobian of composition of functions
and the fact det AB = det Adet B. In consequence, we can build complex transformations
by composing multiple simpler transformations, without compromising the requirements of
invertibility and differentiability. The same idea can be extended to composing multiple
transformations 77,7, ..., Tk to obtain T'= T o --- o T7, where T}, transforms z;_q into
zj., assuming zg = z and zx = x. With a chain of transformations, the 'flow’ is made
of the trajectory that a sample from the base distribution pgy(z) follows as it is gradually
transformed by the sequence of transformations. The word 'normalizing’ refers to the inverse
of the chain of transformations which takes a collection of samples from p(x) and transforms
them (hence 'normalizes’ them) into a collection of samples from py. Figure 2.1 illustrates
the idea of normalizing flow 1.

A flow model allows us to
1. Sample from the model by first sampling z ~ pg(z) and then apply 7', and
2. Evaluate the density of a sample x by Equation 2.20.

These operations have different computational requirements. Sampling from the model re-

quires the ability to sample from the base distribution and computing the forward trans-

1. Figure adapted from https://lilianweng.github.io/1il-1log/2018/10/13/
flow-based-deep-generative-models.html

38


https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html
https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

formation T'. Evaluating the model’s density requires computing the inverse transformation
(- 1) and compute the determinant of Jacobian. Some parameterizations of flows satisfy all
these computational requirements, while some parameterizations only satisfy some of these
requirements, making them suitable for specific applications.

Training: Fitting a normalizing flow to a target distribution can be done by maximizing
likelihood, as the likelihood of x under the model can be specified. In particular, denoting
the set of parameters of all transformations to be 6, the objective for training a normalizing

flow is

=Exp

max £(0) = Fxp(x) [l0g pp(x)]

=Eyp(x) 1ogp0(T9_1(X)) + log |det JT9_1(X) } : (2.24)

Maximum likelihood training is well suited for situations in which we have samples from the
target distribution but we cannot evaluate the ground truth density p(x). We also need to
explicitly compute and differentiate 71 and the determinant of Jacobian.

Alternatively, the model can also be trained by minimizing the reverse KL divergence:

min Ereverse(e) = Dy, (pg(X)Hp(X))
= Expy(x) [log pg(x) — log p(x)]

=K, po(2) [log po(z) — log | det JT6<Z)‘ — log p(Ty(z))] , (2.25)

where in the third line we apply change of variable to express the expectation with respect
z. The reverse KL divergence is suitable when we have the ability to evaluate the target
density but not necessarily sample from it. For example, this objective is used in variational
inference, where a normalizing flow is used to model the variational posterior [Rezende and

Mohamed, 2015, Kingma et al., 2016].

39



2.2.2  Parameterizations of Normalizing Flows

Having described a high-level formulation for normalizing flows, we transition into describing
various ways to construct a flow. We have discussed that a flow T consists a chain of
transformations 7}, that are composed as 7' = Tk o --- o T7. In the case of maximum
likelihood training, we need to compute the inverse and Jacobian determinant, and therefore
we need each block of transformation to have tractable inverse and Jacobian determinant.
These requirements make the computation of inverse and Jacobian determinant of the whole

flow T tractable, since

Tl =T 00T, (2.26)
and
K K
log |det Jp (zg)| = log H det Jp, (z—1)| = Z log |det Jr, (z—1)] - (2.27)
k=1 k=1

We focus on the density estimation task, which is done by maximum likelihood training.
Therefore, we only discuss flow parameterizations that have tractable inverse and Jacobian
determinant.

A tractable Jacobian determinant means that we can compute the Jacobian determinant
efficiently (in linear time). Note that for a general invertible function with D—dimensional
input and output, the complexity for computing the Jacobian determinant is D3, which is
infeasible for large D. Hence, we need to design functional forms that allow the Jacobian
determinant to be computed in linear time with respect to the input dimensionality.

We introduce two particular parametrizations of normalizing flows: RealNVP [Dinh et al.,
2016] and Glow [Kingma and Dhariwal, 2018].

RealNVP: The RealNVP (Real-valued Non-Volume Preserving) model implements a

40



normalizing flow by stacking a sequence of invertible transformation with affine coupling.
Specifically, for each transformation f: x € RP — y € RP| the input dimensions are split

into two parts with dimension d and D — d respectively, where
1. The first d dimensions stay the same: y.; = x1.4, and

2. The remaining d dimensions undergo an affine transformation, where both the scale
and shift parameters are functions of the first d dimensions: y;,1.p = X441.p ©
exp (s (xq1.q4)) +1t (x1.4), where s and t and translation functions parametrized by neural

networks, and ® denotes elementwise product.

It is easy to verify the invertibility of such a transformation:

X1:d = Y1:d

Xi+1:D = (Yd+1:0 — t (Y1:4)) © exp (=5 (¥1:q)) -

Next, we verify that the Jacobian determinant is easy to compute. The Jacobian has the

following form:

I, 04x(D—d)
0
AéM diag (exp (s (x1.4))),

X1:d

J= (2.28)

which is an upper triangular matrix. We know that the determinant for an upper triangular

matrix is simply the product of diagonal entries, so the Jacobian determinant is

D—d D—d
det(J) = H exp (s (x1.4)) Z s(x1.a)j | - (2.29)
j=1 j=1

which can be computed in linear time. Further note that in this parameterization, the inverse

transformation does not involve the inverse of s or ¢, and the Jacobian determinant does not

41



involve computing the Jacobian of s or ¢, so both s and ¢ can be modeled by arbitrarily
complex neural networks.

One potential issue of the affine coupling layer is that some dimensions (channels when
applied to image data) remain unchanged through the transformation. To make sure all the
inputs have a chance to be transformed, the model reverses the ordering in each layer so
that different components are left unchanged. Following such an alternating pattern, the set
of units that remain identical in one transformation layer is always modified in the next.

Glow: The Glow model makes modifications to the RealNVP model. In particular, it
uses affine coupling layers and adds an activation norm module. It simplifies the architecture
by replacing the reverse permutation operation on the channel ordering with invertible 1 x 1
convolutions.

The activation norm is an operation similar to batch normalization, which performs an
affine transformation using a scale and bias parameter per channel. However, unlike batch
normalization, the activation norm also works when the batch size is 1. Kingma and Dhariwal
[2018] found that the additional activation norm module before each transformation improves
the performance.

The invertible 1 x 1 convolution module replaces the permutation operation between
two blocks of transformations in the RealNVP model. Recall that between blocks of the
RealNVP flow, the ordering of channels is reversed so that all the data dimensions have
a chance to be altered. A 1 x 1 convolution with an equal number of input and output
channels is a generalization of any permutation of the channel order. We illustrate that the
Jacobian determinant of this module can be computed efficiently. Suppose we want to apply
the invertible 1 x 1 convolution on a feature map h with size h x w x ¢, the weight matrix

W has size ¢ x ¢. The output f after the convolution is a tensor with size h x w X ¢. It can

42



be shown that (see Kingma and Dhariwal [2018])

detg = log (|detW|h'w|> =h-w-log|det W| (2.30)

log 7h

Since the weight matrix is relatively small, the matrix determinant can be computed effi-

ciently.

2.2.8  Applications of Normalizing Flows

Normalizing flows, due to their ability to be expressive while still allowing for exact likeli-
hood calculations, have been widely used in probabilistic modeling. Besides estimating the
density of given data, normalizing flows are also powerful generative models that can produce
synthetic samples. For example, normalizing flows have been applied to generation tasks on
images [Kingma and Dhariwal, 2018], video [Kumar et al., 2019], Audio [Oord et al., 2018,
Prenger et al., 2019, Kim et al., 2018], text [Tran et al., 2019, Ziegler and Rush, 2019], graph
[Deng et al., 2019, Madhawa et al., 2019] and 3D point cloud [Yang et al., 2019].
Normalizing flows are also applied to model statistical distributions other than the
marginal data distribution as in the generation task. For example, in Miiller et al. [2019],
the proposal distribution for importance sampling is modeled by normalizing flows. In Song
et al. [2017], the authors proposed A-NICE-MCMC, an MCMC algorithm similar to Hamil-
tonian Monto-Carlo but with a volume-preserving normalizing flow as the proposal. Another
way of applying flows to MCMC is to use the flow to reparameterize the target distribution
[Hoffman et al., 2019]. Normalizing flows can also usefully serve as posterior approxima-
tions over latent variables [Rezende and Mohamed, 2015, Kingma et al., 2016, Tomczak and
Welling, 2016, Berg et al., 2018]. Flows are also used in likelihood-free inference (also called
simulated-based inference). In likelihood-free inference, we assume to have a model param-

eterized by 7, but we do not have the likelihood function p(x|n), rather we have a simulator

43



that takes 7 and simulates observations x [Cranmer et al., 2020]. Such simulator-based mod-
els are common in scientific fields such as cosmology and high-energy physics. Normalizing

flows have shown impressive results on this task [Winkler et al., 2019, Gongalves et al., 2020].

2.2.4  Limitations of Normalizing Flows

The normalizing flow model has one important limitation: its parameter efficiency. As
we discussed before, normalizing flows need to maintain invertibility and tractability of
computing the Jacobian determinant. As a result, their functional forms are constrained.
Although in theory normalizing flows can represent a broad class of distributions [Kong and
Chaudhuri, 2020], the actual expressivity is limited by their constrained parameterizations.
Typically the power of each transformation in the flow is very limited. For example, in
RealNVP or Glow, the transformation defining an affine coupling layer is just an affine
transformation. In residual flows [Chen et al., 2019, Behrmann et al., 2019], the inverse is
not defined explicitly but rather relies on the use of the Banach fixed point theorem, which
requires the flow to be contractive, i.e. with Lipschitz constant strictly less than unity.
The requirement on the Lipschitz constant strongly constrains the expressive power of the
model. As a result, usually, a normalizing flow requires a large number of transformation
blocks, resulting in a large number of parameters. It is observed that flow models are difficult
to train, and their sample quality and test data likelihood typically lag behind competing
models [Kingma and Dhariwal, 2018].

One model that alleviates normalizing flows’ issue of parameter inefficiency is continuous
normalizing flows [Chen et al., 2018a, Grathwohl et al., 2018], which will be discussed in
Chapter 5. Another idea is training normalizing flows on a latent space that has relatively

low dimensions. This idea will be studied comprehensively in Chapter 3.

44



2.3 Energy-based Models

In Section 1.2.1, we discussed how to parameterize a distribution for maximum likelihood
training. The parameterization needs to satisfy the non-negativity and normalization con-
ditions in Equation 1.11. There are multiple ways to ensure such conditions. For example,
VAEs enforce the conditions by designing py(x) as the marginalization of a tractable joint
distribution py(x, z), and normalizing flows enforce the conditions by change of variables over
a base distribution, where the Jacobian determinant term ensures the normalization. While
these model parameterizations satisfy the requirements, specific designs are needed and the
model architectures are restricted, and hence the expressivity might be compromised due to
the restrictions. In addition, models with a tractable density that satisfies the conditions
assume that exact synthesis from the model can be done with a specified, tractable proce-
dure, but such an assumption is not always natural. In this chapter, we give an introduction
to Energy-based Models (EBMs), where the non-negativity and normalization conditions
are ensured directly by definition. EBMs are much less restrictive in functional form: in-
stead of specifying a normalized probability, they only specify the unnormalized negative
log-probability, called the energy function. After briefly reviewing the history of EBMs, we
will introduce the formulation of EBMs as well as several training strategies.

EBMs have a long history that dates back to the 80s when models called Boltzmann
Machines [Ackley et al., 1985] were proposed. The idea behind Boltzmann Machines is
taken from statistical physics and was popularized in the cognitive science community, due
to their locality and the Hebbian nature of their training algorithm which connects to neural
science. Later, Restricted Boltzmann Machines (RBMs) [Smolensky, 1986, Hinton, 2012]
were developed based on Boltzmann machines, with the restriction that their neurons must
form a bipartite graph. This restriction allows for more efficient training algorithms than
are available for the general class of Boltzmann machines, in particular the gradient-based

contrastive divergence algorithm [Carreira-Perpinan and Hinton, 2005], which is still widely

45



used for training deep EBMs today. RBMs can also be used when combined with deep
learning. In particular, deep belief networks can be formed by ”stacking” RBMs and op-
tionally fine-tuning the resulting deep network with gradient descent and backpropagation
[Hinton, 2009]. EBMs were used originally in image analysis in Geman and Geman [1984].
Modern deep EBMs, which use deep neural networks to parameterize the energy function,

are developed by [Xie et al., 2016, Du and Mordatch, 2019].

2.3.1 Formulation of EBMs

The core idea behind EBMs is to define a function Ey which is non-negative by construction,
but does not necessarily integrate to 1 over its support. To do so, we introduce the energy
function fy. One way to define Ey that satisfies non-negativity is by using an exponential

form:
Ep(x) = ¢ fo(x), (2.31)

There are several advantages to this form (over other possible choices that can ensure non-
negativity, such as Fp(x) = fy(x)?). The exponential formulation can capture very large
variations in density, as log-probability is the natural scale we want to work with, while other
formulations may need highly non-smooth fy. In addition, this formulation aligns with the
intuition that x with low energy (high fy(x)) is more likely.

The normalizing constraint can be satisfied by explicitly normalizing Ey(x) by the total

integral Zy:

Z@z/Eg(x)dx. (2.32)

X

Note that Zy does not depend on particular x’s as it is obtained from the integral. Since
the constant Zy ensures the normalization constraints, it is called the normalizing constant.

46



With the energy function and the normalizing constant in hand, we can define an EBM as

1
po(x) = Z—ee_fe(")- (2.33)

When Zy can be computed explicitly, we obtained a tractable model whose likelihood can

be computed. For example, for a Gaussian distribution, we have

C (x—w?
EM30'2 (X> =€ 202 )

and the normalizing constant

Similar derivations can be found for many familiar distributions, such as exponential, Pois-
son, gamma, etc. Those distributions belong to the so-called exponential family. However,
in general, EBMs do not require that Zy can be computed analytically. In fact, EBMs allow
arbitrary energy functions fy whose resulting normalizing constant cannot be computed or
even estimated in high-dimensional data space. For example, when fy(x) is a neural network
that takes data x as its input and returns a scalar, certainly there is no easy way to estimate
Zy. We will discuss how to train EBMs with unknown normalizing constant later.

Next, we discuss several important Energy-based Models.

Product of Experts: A Product of Experts model (PoE) [Hinton, 2002] combines
a number of individual component models (the experts) by taking their product and nor-

malizing the result. Each expert is defined as a possibly unnormalized probabilistic model

Po;:

1 M
0i=1

47



where 6 is the set of all parameters {0, --,0;7}. Note that PoEs stand in contrast to
Mixture Models which combine expert models additively. Variants of PoEs have been applied
to compositional visual generation [Du et al., 2020], where each visual concept is modeled
by an expert, and sampling from the combined distribution correspond to compositions of
concepts.

Restricted Boltzmann Machines: Restricted Boltzmann Machines (RBMs) are EBMs
with latent variables. In RBMs, both the observable variable x and latent variable z are
assumed to be binary. For x € {0,1}" and z € {0, 1}"*, and RBM model expresses the joint

distribution as

1
pW,b,c(Xv z) = 7 exp (XTWZ +bTx + cTz>
W.b,c
ZWb P ZZXZ jij + leb * Z zjcj | - (2.34)
=1 j=1

The term 'restricted’ refers to the restriction that there are no visible-visible and hidden-
hidden connections, i.e., X;x; or z;z; terms in the model. Note that RBMs are special cases

of PoE models, since marginalizing z of an RBM model gives

= % H exp (b;jx;) H (1 + exp (Cj + Z mel)> . (2.35)

RBMs have been applied to face recognition [Teh and Hinton, 2000] and collaborative
filtering [Salakhutdinov et al., 2007]. in addition, Stacked RBMs are one of the first deep
generative models [Hinton, 2009]. In a Stacked RBM, bottom layer variables are pixel values,
and layers above represent “higher-level” features (corners, edges, etc). In the early years
of deep learning, neural networks for supervised learning had to be pre-trained as Stacked
RBMs to make them work.

Deep EBMs: One of the core ideas of deep learning is to replace heuristic designs

48



with end-to-end learning. Deep EBMs follow this approach by directly modeling the energy
function fy with a deep neural network that takes x as input and return the scalar energy.

When x is an image, the neural network is typically chosen to have convolutional structures.

Examples of deep EBMs include [Xie et al., 2016, Du and Mordatch, 2019].

2.3.2  Mazximum Likelihood Training with MCMC

From the formulation of EBMs, we know that EBMs have the advantage that they are
extremely flexible, as they allow to plug in any energy function fy. Such flexibility allows
EBM to model arbitrarily complex data distribution, but it also poses some challenges to
the training of EBMs, since many choices of fy lead to an intractable normalizing constant.
In the following sections, we discuss several methods of training EBMs. The first method
we discuss is maximum likelihood training, which is the most widely used.

We cannot directly compute the likelihood of an EBM as in the maximum likelihood ap-
proach due to the intractable normalizing constant Zy. Fortunately, it turns out that we can
still estimate the gradient of the log-likelihood with MCMC methods, allowing for maximum
likelihood training with gradient ascent. The derivation for the gradient estimation comes
from the contrastive divergence algorithm [Carreira-Perpinan and Hinton, 2005, Woodford,
2006]. We will provide the derivation below.

The gradient of the log-probability of an EBM in Equation 2.33 can be decomposed into

two terms:

Vyglogpp(x) = —Vy fo(x) — Vglog Zy. (2.36)

The first term is straightforward to evaluate with automatic differentiation. However, the

second term is difficult to estimate, as the normalizing constant is intractable to compute.

49



Vg log Zy can be written as

Volos 2y = Vylog [ exp (- (x) dx

= To ;( SV [ e (= o) ax
= Fon e ] Yoo () dx
1

ey / exp (— fy(x)) (= Vg fa(x)) dx

= [ BRI )

/ (—Vgfy(x)) dx

Enpp(x) [=Volo ()], (2.37)

where the second equation follows the gradient of the logarithm, the third equation inter-
changes the grdient and integral, and the fifth equation recognizes that Zy = [ exp (— fy(x)) dx

Therefore, we obtain the gradient of the likelihood as:

VioEyp(x) l0g pg(x)] = By px) [= Vo So(x)] + Expy(x) [Vafo(x)] - (2.38)

Both expectations in Equation 2.38 can be approximated by Monte-Carlo samples. For the
first expectation, the positive phase, samples are drawn from the data distribution p(x), and
for the second expectation, the negative phase, samples are drawn from the model pgy(x)
itself.

Gradient estimation also gives an interesting interpretation for the maximum likelihood
training of EBMs. If we do gradient ascent with the gradient estimated by Equation 2.38,
the first term corresponds to minimizing the value of energy function fy over real data,
which is equivalent to increasing the log-likelihood of real data. This is certainly the goal of

maximum likelihood training. Interestingly, the second term corresponds to maximizing the

20



Eg (%) Eg(x)

X L ss o8 >

Figure 2.2: Illustration of maximum likelihood training of EBMs. Left: shape of the initial
energy function. Blue dots are real data, red dots are samples from the model. The training
update increases the energy of sampled data, and decreases the energy of real data. Right:
the energy function after the update. It assigns lower energy value to real data, and higher
energy value at sampled data ensure the normalization constraint.

value of energy function fy over samples from the model, which is equivalent to decreasing
the log-likelihood of sampled data. The purpose of doing so is to ensure the normalizing
constraint: when pushing up the density of some regions, we have to push down the density
of some other regions to ensure the total integral is 1. This interpretation is illustrated in
Figure 2.2.

With gradient estimation, the only remaining thing is to approximate the second term
with samples from the model. As long as we can draw random samples from the model, we
have access to an unbiased Monte Carlo estimate of the log-likelihood gradient, allowing us
to optimize the parameters with stochastic gradient ascent. However, sampling from py itself
is non-trivial, as pyg is unnormalized. MCMC algorithms have to be used, and since we have
access to Vxlogp(x) (because Vxlog Zy = 0), gradient-based MCMC, such as Langevin
dynamics (introduced in Section 1.2.3) and Hamiltonian Monte Carlo [Neal et al., 2011]
are natural choices. For example, when using Langevin MCMC to sample from py(x), we
first draw an initial point xg from a simple noise distribution and iterate with the Langevin

diffusion process for K steps

o1



xFH = xF 4 o Vi log py (xk> +vV2a€", €~ N(0,1). (2.39)

Z—V::fe(x)

As discussed in Section 1.2.3, x<

is guaranteed to follow the py distribution if @ — 0 and
K — oo under some regularity conditions. In practice, we have to use a small finite € and
a finite number of steps K. There are two practical ways to run the Langevin dynamics for
training EBMs with maximum likelihood: persistent LD and short-run LD. In persistent LD,
we do not restart the MCMC chain when training on a new data point; rather, we initialize
a new MCMC using the state of the previous MCMC chain. This method can be further
improved by keeping multiple historical states of the MCMC chain in a replay buffer and
initializing new MCMC chains by randomly sampling from it [Du and Mordatch, 2019]. In

contrast, short-run LD [Nijkamp et al., 2019] initializes x( from noise in every iteration and

runs the LD for a small number of steps.

2.3.83 Alternative Methods for Training EBMs

Besides the widely used maximum likelihood training, there are alternative methods for
training EBMs. In this section, we discuss two of them: denoising score matching and
noise-contrastive estimation.

Denoising Score Matching: We know that if two real-valued functions f and g have
the same first-order derivatives everywhere, then they only differ by a constant. When f and
g are the log-density of two distributions with with equal first-order derivatives, then by the
normalization requirement which requires that both e/ (%) and e9*) integrate to 1, we can
conclude that f(x) = g(x). As a result, one can learn an EBM by matching the derivatives
of its log-density to the derivatives of the log-density of the data distribution. The first-order
gradient of a log-density is called the score function of the corresponding distribution, so the

52



idea of matching the derivatives is called score matching [Hyvérinen and Dayan, 2005]. The

score matching objective is to minimize the Fisher divergence between two distributions:

1
D (p(x)llpe(x)) = By, (x) |5 IVx108 Pdata (%) = Vx log py ()| (2.40)

However, the first term on the right is generally impractical to calculate since it requires
knowing Vx log p(x), the derivative of the density of the data distribution. It can be shown
that minimizing the Fisher divergence in Equation 2.40 is equivalent to minimizing the

following expression

1
E pata(x) [ (Vx8p(x)) + 5 s ()13 (2.41)

where we use sy to denote Vx log py. This objective does not need the derivative of the ground
truth density, but it requires evaluating higher-order derivatives, which is computationally
expensive.

One practical way to do score matching is denoising score matching (DSM) [Vincent,
2011], which involves a kernel density estimate of p(x). It first perturbs the data point x
with a pre-specified noise distribution ¢, (X|x) and then employs score matching to estimate
the score of the perturbed data distribution ¢»(X) £ [ ¢o(X|X)pgata (X)dx, which is the data

distribution p(x) convolved with the noise distribution. The objective is

D (a®)p%) = Eys | 3 [V log () ~ Viclog (1]

1 . -
= Eq(z/x)p(x) {5 [Vx log g(x[x) — Vx logpa(X)H%} + constant , (2.42)

where the expectation is approximated by the samples, thus completely avoiding both the
unknown term Vi log p(x) and computationally expensive second order derivatives. Note

that DSM is not a consistent objective because the optimal EBM matches the noisy dis-

93



tribution ¢5(x), not the data distribution p(x). This inconsistency becomes non-negligible
when ¢, (X) significantly differs from p(x). One way to alleviate the inconsistency of DSM
is to choose g, =~ p, i.e., use a small noise perturbation. However, this often significantly
increases the variance of objective values. Variance-reducing techniques for training DSMs
are introduced in Wang et al. [2020].

We want to emphasize that DSM is closely connected to score-based generative models
[Song and Ermon, 2019], which will be introduced in Section 2.4.

Noise Contrastive Estimation: The high level ideas of Noise Contrastive Estimation
(NCE) [Gutmann and Hyvérinen, 2012] were introduced in Section 1.2.2. Here we briefly
introduce its application to training EBMs. Contrary to most other EBMs, now we treat
Zy as a learnable scalar parameter. Suppose we have training examples {x1,--- ,xy} from
p(x) and samples {X1,--- , X} from a noise distribution ¢(x), the parameter 6 (including
the learnable estimate of normalizing constant) can be learned by maximizing the following

objective [Gutmann and Hyvérinen, 2012]:

- oo P0X) 5 q(x)
I0) = B g 5 B | By o

Note that we can compute py(x) exactly as we now have the normalizing constant. The
objective transforms the estimation of EBM into a classification problem.

The choice of the noise distribution ¢(x) is important. We want ¢(x) to satisfy the
following: (1) analytically tractable density; (2) easy to sample from; (3) close to data
distribution. In particular, (3) is important for learning a model over high-dimensional data.
If ¢(x) is not close to the data distribution, the classification problem would be too easy and
would not require py to learn much about the data. One choice of ¢(x) is normalizing flow

models [Gao et al., 2020].

o4



Figure 2.3: Illustration of denoising diffusion models. The forward process, denoted by ¢, is
a Markov chain of diffusion steps to slowly add random noise to data. The reverse process,
denoted by py, is a Markov chain that is learned to reverse the forward diffusion process and
recover clean data from noise.

2.4 Denoising Diffusion Models

Generative models that have been reviewed in this chapter share a common feature that
their generative process is a black box. VAEs and normalizing flows generate samples by
first sampling z from a noise distribution, and then z is passed through a neural network
to produce samples. EBMs generate samples by iteratively running Langevin dynamics,
however, there is no clear interpretation behind each step of LD. This section introduces
denoising diffusion models, which has a distinctive property that the generation process
corresponds to an explicit inversion of a so-called diffusion process that gradually perturbs
data into noise. More specifically, diffusion models define a Markov chain of diffusion steps to
slowly add random noise to data and then learn to reverse the diffusion process to construct
desired data samples from the noise. Therefore, the generation process of diffusion models
can be clearly interpreted as gradually denoising noisy observations into clean data. An
illustration for the denoising diffusion model is presented in Figure 2.3.

Diffusion models are inspired by non-equilibrium thermodynamics [Sohl-Dickstein et al.,
2015]. The idea of using a Markov chain to convert one distribution into another gradually
was adopted earlier in statistical physics [Jarzynski, 1997] and sequential Monte Carlo [Neal,
2001]. Sohl-Dickstein et al. [2015] first borrowed the idea for generative modeling and de-
signed models with a generative Markov chain which converts a simple known distribution
(e.g., a Gaussian) into the distribution using a diffusion process. Later, Ho et al. [2020]

improved and extended the model to make it capable of generating high-quality samples.

95



Ho et al. [2020] also showed that a specific parameterization of diffusion models reveals an
equivalence with denoising score matching over multiple noise levels [Song and Ermon, 2019].
In their seminal paper, Song et al. [2021b] extend the discrete time diffusion process used
in denoising diffusion models to a continuous time diffusion process modeled by stochastic
differential equations and provide a unified framework to analyze denoising diffusion models
and score-based models.

Diffusion models have achieved state-of-the-art performance on many downstream tasks
and applications. For example, diffusion models beat GANs on the challenging task of
conditional generation on ImageNet dataset [Dhariwal and Nichol, 2021, Ho et al., 2022].
They also achieved impressive performance on audio synthesis [Chen et al., 2020a, Kong
et al., 2021, Popov et al., 2021], 3D shape generation [Cai et al., 2020] and music generation
[Mittal et al., 2021]. Diffusion models can also be combined with other generative models such
as VAEs [Vahdat et al., 2021] and EBMs [Gao et al., 2021]. In addition, diffusion models can
be a powerful tool to solve a variety of inverse problems including super resolution [Saharia
et al., 2021b], image inpainting [Saharia et al., 2021b, Lugmayr et al., 2022] and medical
image reconstruction [Song et al., 2022, Jalal et al., 2021].

In what follows, we will provide an overview of denoising diffusion models. We will start
with the formulation of the model, followed by the process of training and sampling from
the model. Finally, we will discuss the extension of denoising diffusion models to continuous

time space.

2.4.1 Formulation of Diffusion Models

As discussed earlier, diffusion models have a forward process that gradually perturbs data
into noise. Specifically, given a data point sampled from the real data distribution xg ~ ¢(x),
the forward process adds small amount of Gaussian noise to the sample in each of T steps,

producing a sequence of noisy samples x1, - - - , Xxp. Each step is assumed to be a conditional

o6



Gaussian distribution

q(x¢|xi—1) =N (Xt§ V1-— ﬁtXt—hBtf) , (2.44)

where the variance schedule £, t = 1,--- ,T can be seen as step sizes. The variance schedule
is carefully chosen so that x7 does not contain any information about xg and is a sample
from white noise distribution. Note that the process is a Markov chain, as x; only depends
on x4_1 and no previous steps. The joint distribution of xj.7 given the clean data xg can

be written as

T

g (x1.7lx0) = [ ¢ (x¢xi-1) - (2.45)
=1

One nice property of the forward process is that given initial clean data xq, we can sample

x4 for arbitrary time step ¢ in closed form. Denote oy =1 — 8 and ay = Hzrzl «;, we have

Xt =aXe—1+ /1 — e
= Varag_1xi—2 +Vor(l —ap1)ep—9 + /1 — arer g
= Varoq_1xX¢—2 + /1 — ooy _16-2

:\/d_tX0+ Vl_dtev

where €;_1,¢;_9,6_9 and € are all sampled from A(0,7). The third equation uses that
fact that if X and Y are two independent random variables with X ~ N (u X,og() and
Y ~N (,uy, 032,), then 7 = X +Y is distributed as Z ~ N (MX + wy, 0‘%( + 0}2,). Therefore,

we have

q (Xt|X0) =N (Xt; \/d_tXO, (1 — @t) ]) . (2.46)

57



The reverse process (or backward process) is another Markov chain whose goal is to
reverse the forward process. Note that if we can sample from g(x;_1|x¢), we can recreate a
true sample from a Gaussian noise input x7 ~ N (0, I). However, we cannot directly sample
from q(x¢_1|x¢), as we cannot easily go from higher entropy to lower entropy. The reverse
process aims to approximate these conditional probabilities q(x¢_1|x;) with a parameterized

model pyg. We assume the model also has the form of Gaussian conditional distributions:

Py (x¢—1]x1) = N (x¢—1; g (x4, 1) , g (x4, 1)) , (2.47)

and

po (X0.7) o (xi—1]%¢) - (2.48)

||::]ﬂ

Besides the conditional distribution in the forward and reverse process, there is also an
important distribution that will be used later: ¢ (xy_1|x¢,Xq), the posterior distribution
given initial point xq. It is noteworthy that this reverse conditional probability is tractable

when conditioned on xq. To derive the posterior, we first apply the Bayes rule:

q (x¢|x¢—1,%0) q (x¢—1[%0)
q (x¢|xq)
q (x¢]x¢—1) q (x¢—1]%0)
q (x¢|x0)

q (x¢—1|x¢,%0) =

, (2.49)

where the second equation follows from the Markov property of the forward process. Since all
three terms in Equation 2.49 are Gaussians, the posterior ¢ (x;_1|x¢,Xg) is also a Gaussian

distribution, and it can be written as

q (x¢—1]x¢,%0) = N (thlﬂl (x¢,%0) 73t1> : (2.50)

o8



By plugging in the expression for g (x¢|x;_1) in Equation 2.44 and the expression of ¢ (x¢|x()

and ¢ (x;_1|xg) in Equation 2.46 into Equation 2.50, together with the fact that xg =
\/% (xt — /11— dtzt), we can obtain

o 1 — oy ~ 1— ooy
:—mﬁtxo—i— \/Et( Gi-1) and [t = i 2 §

. 2.51
1—oy 1—oy Xt 11—y Bt ( )

At (Xt,%0) :

2.4.2  Training Denoising Diffusion Models

Given the parameterized reverse process in Equation 2.47, the training objective is to find

means [y (X¢,t) and variances Yy (x¢,t) that maximize the data likelihood under the model:

po (X0) = /pe (x0.7) dx1.7,

where py (x.7) is given in Equation 2.48. We can treat xy.7 as latent variables, and obtain

the following variational lower bound:

log pg (x0) > log pg (x0) — Dx1, (¢ (x1.7[%0) [|Pg (X1.7[%0))

q (x1.7/%0) }
Py (X0.1) /Po (X0)

= logpg (x0) = Ex, uq(x1.1/x0) {log

q\X1.71X0
= log pg (x0) — Eq |log atxur*o) log pg (Xo)]
po (X0.1)
q (x1.7[%0)
=E [— log —————= (2.52)
K po (X0.7)
Therefore, we obtain the training objective:
min Ly = E, {— log M} (2.53)
0 q (x1:7[%0)

The objective can be further rewritten to be a combination of several KL-divergence and

29



entropy terms, as discussed in Appendix A in Ho et al. [2020]. One way to rewrite Ly is

L=E, ~logp (x7) Zl Po (X¢— 1’Xt)
=1 q (alxi—1)

po (xe—1]xt) q(x¢-1)
=F, | =1 1
o | ~loap(xr) = 3 log g(xe1x) g (xt)

i t>1
Po (xt—1%t)
=E,; |- log —log q (xq
! ; q (x¢— 1|Xt) (o)

= Dx, (a (x7) Ip (e7)) +Bq | Y Dk (a (x-11x1) lIpg (xe-1x0) | +H (x0) - (2:54)

t>1
Note that in the last equation, Dk, (¢ (x7) ||p (x7)) is constant during training, as we assume
both ¢ (x7) and p (x7) are white noise distributions. In addition, H (xq) is independent of

the parameter 6. Therefore, the objective is to minimize

By | Dir (g (xe—11x) [pg (xe—11x1)) | ,
t>1

which exactly corresponds to the goal of the denoising diffusion model, which is that we want
our parameterized reverse process py (x;_1|X¢) to match the reverse of the forward process
q (x¢—1|x¢). However, since we never know the true reverse process q (x;_1|x¢), we cannot
directly minimize Equation 2.54 to train the model.

Sohl-Dickstein et al. [2015] show that Ly can be written in an alternative form with

tractable distributions. We include the derivation here.

60



q (x1.7|%0)

o (Xt—1]%t)

=E, —log p (x7) Zl Xt‘Xt N

t>1

—E, | ~logp(xr) — 3 log ! po (Xi—1lxe)  po (Xolx1)
o aalxe-) q (x1x0)

=Ky —logp (x7) Zl pg (x¢—1/x¢t) _ q (x¢—1]x0) o Py (x0|x1)

= a(xealxexo) g (xefxo) q (x1]x0)
_ B, | —logpp (x1) +ZIO (x¢—1lxt,%0) |\ 4 (xT|%0) 4 log q (x1]x0)

= po(xe-1xt) q (x1]x0) pe (xolx1)

Po (Xt—1/%t
=Eg | —log —> log o (xt-1]xt) — log py (xo[x1)
XT|X0 = a(xe-1lxexo)
T
= Eq[Dkr (¢ (x7 | Xo) lpg (7)) + > Dkr (q (x¢—1 | xt,%0) [lpg (x¢—1 | xt))  (2.55)
LT t=2 LZ1
— logpy (xq | x1)] (2.56)
—_———

Ly

Again, the first term is constant during training. The expression for Ly in Equation 2.55

rewrites q (x¢|x;—1) as

q (x¢—1]%t,%0) q (x¢|%0)
q (x¢—1]%0)

q (x¢|x¢—1) = q (x¢|x¢—1,%0) =

Y

where the first equality follows from the Markov property. Therefore, we can express the dis-
tribution with the posterior distribution ¢ (x¢_1|x¢, Xg) in Equation 2.50, which is a tractable
Gaussian distribution. Note that each KL-divergence term in Equation 2.55 compares two

Gaussian distributions and therefore they can be computed in closed form.

61



Next, we discuss how to parameterize the means pg (x¢,t) and variance Yy (x¢,t) of
pp (x¢—1/x¢). Ho et al. [2020] set Yy (x¢,t) = 071, where s are untrained time dependent
constants. 0t2 is set to be either G, the variance in the forward process or 3¢, the variance
of the posterior distribution. In contrast, [Nichol and Dhariwal, 2021] propose to learn
Yp (x¢,t) as an interpolation between ¢ and B. For simplicity, we follow the setting of Ho
et al. [2020].

For the means pug (x¢,t), we want them to approximate the posterior mean fis (X¢, Xq)-
Naively, we can parametrize py (x¢,t) with a neural network and minimize
I

Li_1 =E, +C (2.57)

1 .
252 |7t (x¢,%0) — pg (xt,t)
T

for each time step. However, Ho et al. [2020] observe that instead of learning g (x¢,t) to
directly predict the posterior means, parameterizing the network with some transformations

leads to better results. Firstly, from Equation 2.46, we can express Xg in terms of x; and z:

X)) = \/La_t <Xt — \/1—76ztzt> . (2.58)

Plug in the expression of x( into the expression of fi; (x¢,xg) in Equation 2.51, we have

. Vor (1 —ag—1) Var—1pe 1 < — >
pu— — —— JR— 1 —
[t 1 —a, Xt + 1—a \/d_t Xt \/ izt

_L<X_LZ>
T Va Vit a )

As a result, given x;, we only need the noise z; to obtain the posterior mean. Since x; is

(2.59)

available during training, we can use a network zy to parametrize the noise, and hence we

have

1 Bt
o x.0) = = (Xt e <xm>) . (2.60)

62



Plug in the expression of ji; in Equation 2.59 and the expression of pg (x¢,t) in Equation

2.60 into the objective in Equation 2.57, we obtain the final training objective

2 2
Ex.z [ 5 P Hzt — 2 <\/_64tx0 /1o @tzt,t>H ] . (2.61)
207 )

(1—ay

The training can be interpreted as “noise prediction”: given noisy observation x; obtained
from perturbing clean data x(, the network takes x; and ¢ as inputs, and tries to predict the
noise z; that perturbs xg into x¢.

Giving a well-trained noise prediction network zg (x¢, ), we can sample x;_1 ~ pg (X¢—1|x¢)

by computing

1 B
1= — - t 2.62
101 = <= (xt = = (x.0)) + vm (2.62)

where z ~ N(0,I). Starting from a white noise xp and iteratively running Equation 2.62,

we can obtain a clean sample xg.

2.4.83 Extension of Diffusion Models to Continuous Time

One important hyper-parameter of diffusion models is 7', the number of time steps. It is
observed that a large number of steps is needed for high sample quality. A larger number
of steps means a smaller step size, which in turn makes the modeling more accurate as each
time conditioned model only needs to predict a small denoising step. When the step size
approaches 0, we obtain the continuous-time diffusion process, which can be described by
the dynamics of a stochastic differential equation (SDE).

Song et al. [2021b] extend diffusion models to continuous time using the tool of SDEs,

and their models are called score SDE models. In particular, the diffusion process can be

63



modeled as the solution to an Ito SDE
dx = f(x,t)dt + g(t)dw, (2.63)

where f(-, 1) : R% — R? is a vector-valued function called the drift coefficient, g(t) eRis a
real-valued function called the diffusion coefficient, and dw can be viewed as infinitesimal
white noise. Similar to the discrete case, let pg(x) = p(x) as the data distribution, after
perturbing pg(x) with the stochastic process for a sufficiently long time T', pp(x) becomes a
tractable noise distribution.

We want to sample xp from the noise distribution pp(x), and reverse the process to
obtain samples from xg. Remarkably, given the forward diffusion process in Equation 2.63,
we have an associated reverse process which is also also a diffusion process, running backward

in time and given by the reverse-time SDE [Anderson, 1982]
dx = [f(x, t) — ¢*(t)Vx log pr(x) | dt + g(t)dw. (2.64)

Therefore, if we can estimate the score function Vxlogp¢(x), we can simulate Equation
2.64 to generate samples. In order to estimate Vxlogpi(x), Song et al. [2021b] adopt
score matching and propose to train a time-dependent score-based model sy(x,t) such that

sp(x,t) = Vxlogpi(x). The training objective is

Ere(0,1) ) [ MO [V log pr(0) = sp(x, 0113 (2.65)

where U(0,T) is the uniform distribution over the time interval [0,7] and A is a positive

weighting function. Due to the intractability of Vx log pt(x), the actual training objective,

64



as done in Section 2.3.3, uses denoising score matching:

2
Bt e14(0,7)Ex(0) ~po (x) Ex () ~pos (x(1)[x(0)) {A(t) HS@(X(tH) = V() log pot (x() IX(O))HQ] :

(2.66)

After training the time-dependent score matching model, we can simulate the reverse SDE
in Equation 2.64 with numerical SDE solvers. For example, the simplest numerical SDE
solver is the Euler-Maruyama discretization.

One crucial component of score SDE models is the design of the forward diffusion process.
There are multiple ways to design the process. For example, the discrete diffusion process

in Equation 2.44 corresponds to the discretization of the following SDE:

dx — —%ﬁ(zﬁ)xdt +/ADdw. (2.67)

The noise conditional score matching model introduced in Song and Ermon [2019] corre-

sponds to the following SDE:

d [02(1)]

d pr—
x at

dw. (2.68)

Therefore, Song et al. [2021b] unify denoising diffusion models and denoising score matching

models under the framework of score SDE models.

2.4.4 Limitations of Diffusion Models

The most significant limitation of diffusion models is their slow sampling speed. It is very
slow to generate samples from a denoising diffusion model by iteratively running Equation
2.62, as T' can be up to one or a few thousand steps. Each step involves a network evaluation

of zp(x¢, t), which is expensive. For example, Song et al. [2020a] observe that it takes around

65



20 hours to sample 50k images of size 32 x 32 from a diffusion model on an Nvidia 2080 Ti
GPU, while it takes less than a minute to do so from a GAN. The slow sampling speed makes
diffusion models hard to apply to tasks that require real time synthesis, such as interactive
image editing. In continuous time space, score SDE models do not have an explicit definition
of the time step. However, sampling from them requires numerically solving the reverse SDE
by discretization, and each discretization step still requires a network evaluation. To solve
the SDE accurately, a large number of discretization steps is needed.

One way to reduce the sampling time is to run a strided sampling schedule, where sev-
eral steps in the forward process are combined into a single step in the reverse process,
with appropriately adjusted mean and variance parameters. In the score SDE model, this
corresponds to using a coarse discretization scheme to solve the reverse SDE. However, this
approach leads to significantly worse sample quality.

We will discuss other methods that aim to improve the sampling speed of diffusion models

in Section 6.

2.5 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] are perhaps the most
successful and widely used deep generative models. They have shown great results in many
generative tasks that replicate the real-world rich content such as images [Brock et al., 2018,
Karras et al., 2017, 2019, 2021}, natural language [Subramanian et al., 2017], speech [Kong
et al., 2020] and music [Yang et al., 2017]. We postponed the introduction of GANs until
the end of this chapter because the majority of this dissertation focuses on likelihood-based
generative models. The high-level idea behind GANs has been discussed in Section 1.2.2 as
part of the density ratio approach for training generative models. In what follows, we will
give a more in-depth introduction to GANs.

A GAN consists of two models:

66



Figure 2.4: Ilustration of GANs. The discriminator tries to distinguish real and fake samples,
while the generator generates samples that can fool the discriminator.

e A discriminator D estimates the probability of a given sample coming from the real
data distribution. It works as a critic and is optimized to distinguish fake samples from

the real ones.

e A generator G outputs synthetic samples given a noise variable input z. It is trained to
capture the real data distribution so that the samples generated by the GG can be as real
as possible, or in other words, can fool the discriminator to return a high probability

of being real.

These two models compete against each other during the training process: the generator G
is trying hard to confuse the discriminator, while the critic model D is trying hard not to
be confused. This zero-sum game between the two models motivates both to improve their
functionalities. Figure 2.4 provides a illustration of GANSs.

At the beginning of Chapter 2, we mentioned that, unlike explicit generative models that
are discussed in previous sections, GANs belong to the category of implicit generative models.
Here we will provide a detailed explanation of implicit generative models. The distinctive
property of implicit generative models is that they get rid of prescribed distributions. Some
explicit models, such as VAEs, share some similarities with GANs in that they both have a
decoder structure, and the decoder takes latent variables z as its input. However, a VAE’s

decoder has a prescribed distribution, as we let py(x|z) be a Gaussian. In contrast, a GAN’s

67



decoder returns only a single point. In other words, the conditional distribution is a Dirac’s

delta
po(x|z) =0 (x— Gy(z)), (2.69)

where Gy is the decoder network. This is equivalent to say that instead of a Gaussian (i.e.,
a mean and a variance), Gy outputs the mean only. It is still possible to obtain the marginal

distribution py(x), as

pa(x) = [ 6(x = Gy(a) pla)da. (2.70)

The marginal distribution is an infinite mixture of delta peaks, and a single z in the latent
space corresponds to a single x in the data space. Imagine that for every z, we plot Gy(z)
in the data space, then the data space will be covered by infinitely many points, and some
regions will be denser than the others. The resulting density still makes py(x) a valid
distribution, but we do not know the exact form of py(x). This kind of distribution modeling
is known as implicit modeling.

Explicit models with a prescribed distribution can be trained by maximum likelihood
(minimizing the KL divergence), however, the Dirac’s delta distribution in implicit models is
ill-defined and cannot be used in many probability measures, including the KL divergence.
Luckily, we do not need to stick to the KL divergence. Instead, we can use other metrics that
look at a set of points (i.e., distributions represented by a set of points), including kernel-
based Minimum Mean Discrepancy (MMD) [Gretton et al., 2006] and other divergences
[Van Erven and Harremos, 2014]. GANs use adversarial training as a surrogate to minimize
the distance between (implicit) py(x) and true data distribution p(x), and the exact type of
distance depends on the particular choice of GAN loss.

In what follows, we will introduce the training objective of GANs and try to formulate

68



GAN training in the context of divergence minimization. We will also discuss the challenges

of GAN training, as well as some important GAN variants.

2.5.1 Understanding the Training of GANs

The discriminator Dy : & — [0,1] takes an object z in the data space and returns a
probability whether it is real. The generator Gy : Z — X takes a noise z and turns it into
an object x. Since the discriminator can be seen as a classifier, we can optimize the binary

cross-entropy loss function in the following form

L0 = Exopyoa(x) 108 Dp(¥)] + Egp(x) [log(1 — Dyg(x))] (2.71)

= Exrvp(x) [log D(b(x)} + EZNp(z) [log(l — D¢(G9(Z)))] . (2.72)

On one hand, we want to make sure the discriminator D assigns high probability of being
real over samples from the data distribution by maximizing Ey data () [log D¢(x)] w.r.t ¢.
Meanwhile, given a fake sample Gy(z) where z ~ p(z) the discriminator is expected to output
a probability Dy, (Gy(z)) close to zero by maximizing E, ) [log(1 — Dy(Gy(z)))] w.rt o
On the other hand, the generator is trained to increase the chances of Dy producing a fake ex-
ample with a high probability of looking real, thus to minimize E, ) [log(1 — Dy(Gy (z)))]
w.r.t. 6. When combining both aspects together, Dy and Gy are playing a minimax game

in which we should optimize the following loss function

mgin m(;xx Lo =Expx) [log D¢(x)} +E,p(z) [log(1 — D¢(G9(z)))] . (2.73)

Optimal discriminator: To better understand the training of GANs, we derive the
optimal solution of the discriminator when the generator is fixed. The training objective of
the discriminator corresponds to finding the optimal Bayesian classifier that distinguishes

samples from pg,i4(x) and py(x), given that the prior is % for each source. In this case, when

69



the generator is fixed, the optimal classifier value is

* () — pdata(x)
Do) = pa) + par) € 01

Furthermore, we can derive the optimal value of the objective function when the generator
and discriminator are both optimal. We first rewrite the objective in Equation 2.71 in the

integral form (assuming we have the expression of pat,(x) and py(x), although we do not):

Djj(x) = / Paata(¥)108(Dy (%)) + pp(x) log (1 — Dy(x))dx. (2.74)

When the generator is trained to its optimal, pgaia(X) is very close to py(x), and in that
case, D;Z(X) = %, i.e., the discriminator cannot distinguish between real and fake samples.

In this case, given the optimal value of DZZ(X), the resulting optimal value of the objective is

| (paalo oz (D360 + po(x) 105 (1= D300) ) ax

1
/ Pata(X)dx + log = / po(x)dx (2.75)
X 2 X

N | —

= log

= —2log 2.

For convenience, we denote the objective in Equation 2.74 with the optimal discriminator
value in Equation 2.73 as V (G, D¥).

Connection to Jensen-Shannon divergence minimization: We also show that
when the discriminator is optimal, the loss function can be expressed in terms of a Jensen-
Shannon divergence term. First we will define Jensen-Shannon (JS) divergence. Recall the

definition of KL divergence:

= x)lo @ X
D p(0llax)) = [ px)ton i (2.76)

70



and note that KL divergence is not symmetric. JS divergence is a symmetric measure of

similarity between two probability distributions, and it is defined by

1 ptay 1 p+q
Dystrl) = 30 (257 ) + 30w (a125)). )

Similar to KL divergence, D jg(p||q) if and only if p = ¢. With this definition in hand, the

JS divergence between pgaia(x) and py(x) can be computed as

1 Ddata T Pg 1 Ddata T Pg
D js (PdatallPe) =5DkL (Pdata”% + =Dk | pol| —5——

2 2
1
== (logZ +/pdata(x) log de) +
2 x Pdata + Pg(T) (2.78)
1 py(x)
— 10g2—|—/p9(a:) log ————"——dx
2 ( x Pdata + P ()
1
— 1 (logd +V (G, D7),
where the last line follows from the definition of V' (G, D*). Therefore,
V(G,D*) =2D g (pr|pg) — 2log2. (2.79)

Essentially the training objective of GANs quantifies the similarity between the py(x) and
the data distribution by JS divergence when the discriminator is optimal. In addition, the
best generator will minimize the JS divergence to 0, leading to the optimal loss value —2 log 2

in the equilibrium.

2.5.2  Challenges in Training GANs

Although GANs have had great success in many domains, there are many challenges in
training GANs. The training process is unstable, and there are multiple possible reasons.

We will discuss several of these, in particular, the biggest issue with GANs: the mode

71



collapse.

Challenges of min-max optimization: In GAN training, two models are trained
simultaneously to find a Nash equilibrium of a two-player non-cooperative game. Unlike
most machine learning problems whose objective is a simple minimization or maximization,
the objective of GANs is a min-max problem. Each model updates independently with no
respect to the other player in the game with the gradient descent-ascent (GDA) technique
[Lin et al., 2020]. Updating the gradient of both models independently concurrently cannot
guarantee convergence to a Nash equilibrium, and there are many counter-examples with
simple forms of the objective. The non-convergence may lead to instability during training,
as discussed by [Salimans et al., 2016]. Min-max optimization (and in particular with non
convex-concave objective) is an active research direction in optimization theory [Daskalakis
and Panageas, 2018, Farnia and Ozdaglar, 2020, Wang et al., 2019]. Still, so far, there is no
principled way to solve the problem.

Imbalance between discriminator and generator: It is important to keep a balance
between the discriminator and the generator, and it would be problematic if the discriminator
becomes too strong. Imagine a perfect discriminator which can always classify real and fake
samples. Then we have D(x) = 1 for all x ~ pgaia(X) and D(x) = 0 for all x ~ py(x), the
loss function falls to zero and we end up with no gradient to update the loss during learning
iterations. Therefore, we have to keep a subtle balance: if the discriminator is too weak, the
generator does not have accurate feedback, and the loss function cannot reflect the real or
fake probability; If the discriminator does a great job, the gradient of the loss function drops
down to close to zero, and the learning gets stuck. Note that it is always easier to do binary
classification than generate new samples, so oftentimes, the discriminator is too strong. As
a result, a variety of regularization techniques that restrict the power of the discriminator
are proposed [Mescheder et al., 2018, Zhang et al., 2019, Kurach et al., 2019]. However, it is

still difficult to keep the balance between two losses.

72



Figure 2.5: An example of mode collapse. The generator produce repeated patterns.

Mode collapse: During training, the generator may collapse to a setting where it always
produces the same outputs. This is a common failure case for GANs, commonly referred
to as mode collapse. Even though the generator learns to fool the discriminator, it fails to
represent the complex data distribution and gets stuck in a small space with extremely low
variety. See Figure 2.5 for an example.

The cause of mode collapse is not completely clear. One explanation is that the ob-
jective function of training GANs has a reverse KL divergence component (part of the JS
divergence). Minimizing the reverse KL divergence Dk, (pg|Pdata) Will encourage the model
to cover some of the modes in data distribution since there is no penalty for not covering
Pdata When there is no probability mass under py. In contrast, maximum likelihood training,
which minimizes the forward KL divergence Dkr, (PgatallPg), will penalize any mismatch
where pgata(X) is not zero, and hence the model is encouraged to cover all the modes of
Pdata(X). As a result, models trained by maximum likelihood tend to have better mode
coverage than GANs. Several methods are proposed to alleviate the mode collapse issue of
GANSs [Srivastava et al., 2017, Dieng et al., 2019], but mode collapse is still one of the biggest

challenges of GAN training.

73



2.5.8 Important GAN variants

Because of the popularity of GANs, there are multiple attempts to further improve the
GAN model. In this section, we introduce two important variants of GANs. The first one,
Wasserstein GAN [Arjovsky et al., 2017], proposes a new training objective based on the
Wasserstein distance between two distributions. The second one, Style GAN [Karras et al.,
2019], focuses on architectural design and proposes several important modifications to the
implementation of GANs, which lead to state-of-the-art sample quality.

Wasserstein GAN: The optimization of the original GAN objective is difficult, due to
generator’s vanishing gradient problem caused by a powerful discriminator, as described in

the previous section. [Goodfellow et al., 2014] propose a slightly different generator loss:
meax IEZNq(z) [log D(G(z))],

which is called Non-Saturating GAN loss. While this loss function can address the vanishing
gradient problem, Arjovsky and Bottou [2017] illustrates that it has a large variance of
gradients that makes the training unstable.

To obtain a GAN objective that is easier to optimize, Arjovsky et al. [2017] propose
Wasserstein GAN (W-GAN), which is based on the concept of Wasserstein distance (also
called the Earth Mover distance). Wasserstein distance between two distributions p and
q is the minimum cost of transporting mass in converting distribution ¢ to distribution p.
The exact form of Wasserstein distance depends on the choice of cost. For example, the

commonly used Wasserstein-1 distance is defined by

w = inf E — 2.80
(p7Q) ’yell_[n(p,q) (x,y)w’y[”x y||]> ( )

where II (p, ¢) denotes the set of all joint distributions v(x,y) whose marginals are p and
q, respectively. By the Kantorovich-Rubinstein duality [Villani, 2009], the Wasserstein-1
74



distance can be equivalently written in the following form:

Wip,q) = sup By, ) lf(X)] = Exopix lf (X)), 2.81
(p,q) S Ecp ) ()] g(x) [f ()] (2.81)

where the constraint on f says that f must be a 1-Lipschitz function.

In W-GAN, the Wasserstein distance is computed between pyata (%) and py(x). The core
idea behind W-GAN is to train a generator that minimizes the Wasserstein distance between
Pdata and py. Since computing the distance itself can be formulated as a maximization
problem, the whole objective is a min-max problem, and hence the model is a GAN. The
Lipschitz function f in Equation 2.81 can be seen as a discriminator, although it is not a
direct critic of telling the fake samples apart from the real ones, and it does not need to
output a probability (which means that the output does not need to be in [0,1]). For a
better connection with previous GAN models, we denote the function by Dy. The objective

for training Dy, is

max B b () [P ()] = By y(2)[Dp (G (2))], (2.82)

while keeping the constraint that ||[Dyll;, < 1. Optimizing overall Lipschitz functions is
impossible, and the solution is to parameterize them through a deep neural network, con-
strained to have a Lipschitz constant less than 1. Optimizing this objective corresponds to
computing the Wasserstein distance. The objective for training the generator is to minimize

the Wasserstein distance, which is done by minimizing the same objective w.r.t 6:

mein _EZNp(Z) [D¢(GQ(Z))] (283)

One subtle point in training W-GAN is to maintain the Lipschitz constant of Dy. In the

original paper of Arjovsky et al. [2017], this is implemented by gradient clipping. Alternative

75



methods such as gradient penalty [Gulrajani et al., 2017] and spectral normalization [Miyato
et al., 2018] are proposed later. It is observed that the training of W-GAN is more stable,
and the mode collapse issue is greatly alleviated.

It is also noteworthy that in W-GAN, the gradient of the objective for training Dy is
very similar to Equation 2.38, the gradient estimate of the maximum likelihood objective for
training EBMs. Such a connection will be utilized in Section 5.

Style GAN: While most of the GAN research focuses on optimization, such as new
regularization terms [Zhang et al., 2019, Miyato et al., 2018 and new training losses [Arjovsky
and Bottou, 2017, Mao et al., 2017], Style GAN [Karras et al., 2019] focuses on the design
of the network. Previous GANs had trouble generating high-quality large images (e.g.,
1024 x 1024), and in particular, they may fail to capture the details of high-resolution
images. Style GAN re-designs the generator architecture and proposes novel ways to control
the image synthesis process. Here we will introduce some essential features of Style GAN.

The first feature is the mapping network, which is a multi-layer, fully connected network
that transforms the input noise vector z into the so-called style vector w before sending
it to the main generator. Specifically, in the original Style GAN, the mapping network
consists of 8 fully connected layers, and its output w is of the same size as the noise input
layer (512 x 1). The purpose of the mapping network is to encode the input vector into an
intermediate vector whose different elements control different visual features.

The second feature is the adaptive instance normalization module. In short, the vector
w obtained from the mapping network is injected into the generator by adaptive instance
normalization, which is motivated by the literature on style transfer [Huang and Belongie,
2017]. The module is added to each resolution level and aims to define the visual expression
of the features in that level. The adaptive instance normalization module works as follows.
First, an instance normalization operation is performed, where each channel of the convo-

lution layer output is first normalized to mean 0 and variance 1. Then, the intermediate

76



Latent z € Z . Noise
Synthesis network g

Normalize Const 4x4x512
Mapping
network f

Figure 2.6: Illustration of Style GAN. Figure taken from Karras et al. [2019]. Latent vector
z is first mapped into an intermediate latent space VW, which then controls the generator
through adaptive instance normalization (AdaIN) at each convolution layer.

vector w is transformed using a fully-connected layer to obtain the w-dependent shift and
scale parameters pu(w) and o(w). Finally, the normalized convolutional output is affinely
transformed by p(w) and o(w).

The third feature is that Style GAN removes the standard input of noise vector z to
the generator. Most GANs use the random latent vector z as the input to the generator.
In contrast, Style GAN injects latent variables into the generator with adaptive instance
normalization. Therefore, the input to the generator (where the tower of convolutional
layers starts) is replaced by a shared but learnable constant. Karras et al. [2019] argue that
passing latent information to the network as normalization controllers instead of as inputs
improves the performance of modeling fine-grained details of images.

The structure of Style GAN’s generator is demonstrated in Figure 2.6. The ideas behind

7



the design of Style GAN are widely used, and in particular, we borrow many elements of

Style GAN to the model presented in Section 6.

2.6 Summary

In this chapter, we reviewed 5 popular deep generative models. In summary, we will list
the pros and cons of each model in this section. Note the main theme of this dissertation is
designing new generative models by combining different existing models, and therefore it is
critical to know the advantages and disadvantages of each type of model. At the end of this

section, we will highlight the motivation for composing different generative models.

e Variational Auto-encoders

— Pros: tractable estimate of likelihood; stable training; fast sampling (1 network

evaluation); provide low dimensional latent representations.

— Cons: low sample quality due to the prior hole issue.
e Normalizing Flows:

— Pros: tractable and exact likelihood computation; fast sampling (1 network eval-
uation).

— Cons: low parameter efficiency due to restricted structure; difficult to train; low
sample quality.

e Energy-based Models:

— Pros: no constraint on the functional form; less affected by the over-smoothing
effect of maximum likelihood training (because EBMs will explicitly decrease the

density outside the support of the data distribution).

78



— Cons: expensive update due to MCMC sampling; slow sampling speed; cannot be

easily scaled up to high dimensional data.
e Denoising Diffusion Models:

— Pros: excellent sample quality; good likelihood estimate; stable training (the loss

is essentially a Lo regression).

— Cons: extremely slow sampling speed.
e Generative Adversarial Nets:

— Pros: excellent sample quality; fast sampling (1 network evaluation).

— Cons: training instability; suffered from mode collapse; no likelihood estimation.

The goal of designing deep generative models by combining two existing models is to enjoy
the best of both worlds: we hope to obtain a generative model that keeps the advantages
while removing the disadvantages of both of its components. We call such a composition
symbiotic composition. In ecology, symbiosis means the biological interaction between two
different biological organisms, and the interaction must be beneficial to both species. We
name our core idea with this term to emphasize that our proposed compositions can benefit
both sides. The resulting models improve the generative performance and, more importantly,
overcome some of the fundamental limitations of deep generative models.

In the following chapters, we will comprehensively introduce several of our proposed deep

generative models designed with symbiotic composition.

79



CHAPTER 3
GENERATIVE LATENT FLOW: TOWARDS FLEXIBLE
PRIOR DISTRIBUTIONS IN LATENT SPACE

In this chapter, we discuss Generative Latent Flow, a model we proposed that aims to im-
prove the sample quality of auto-encoder based models by modeling the latent space with
a flow-based prior distribution. We will begin with motivating our approach and intro-
ducing related work. Then we will give a detailed description of our method and present
experimental results.

The material of this chapter is based on Xiao et al. [2019].

3.1 Motivation and Introduction

Auto-encoder is one of the earliest deep learning models for unsupervised learning. An auto-
encoder consists of a pair of neural networks: an encoder that learns how to compress the
input data into a low-dimensional representation and a decoder that learns how to reconstruct
the data from the encoded representation to be as close to the original input as possible.
Originally, the compressed expression obtained from the encoder was applied to downstream
tasks such as classification. In their original form, auto-encoders were not generative models,
as they only compress and reconstruct input data, while it is not clear how they can generate
new samples. The idea of generative auto-encoders is to train an encoder-decoder pair with
reconstruction loss and utilize the obtained decoder to generate new samples. Such an idea
requires that we can sample from the (empirical) marginal distributions of the compressed
representations from the encoder. This is because the representations associated with real
data may only occupy a small portion of the high-dimensional latent space, and they may be
distributed with a specific shape, and only drawing samples accordingly can produce realistic

decoded samples.

80



One method to design generative auto-encoders is to force the distribution of the com-
pressed representations of the training data to follow a simple distribution that can be easily
sampled from. Doing so requires regularizing the encoder. For example, Variational Auto-
encoders introduced in Section 2.1 follow this approach with a probabilistic encoder so that
the compressed representation is a sample from the posterior distribution. VAEs encourage
the posterior distribution to be close to a noise distribution (called prior) by minimizing a KL
divergence term between them, and it can be shown that such a loss term will equivalently
enforce the marginal distributions of the representations to be close to the prior. Some other
models with this approach will be discussed in Section 3.2. Forcing the latent representations
to follow a noise distribution has several disadvantages. Firstly, doing so will introduce an
undesirable trade-off in the reconstruction quality. If the constraint on the latent distribu-
tion is stronger, the reconstruction quality (and subsequently the generation quality) will
be worse. Secondly, it is observed that even if the latent distribution is constrained to be
close to some prior, typically, there is still a significant mismatch between them. In VAEs,
there are regions in the latent space that have a high density under the prior but have a
low density under the marginal distribution of latent variables (also called the aggregated
posterior).

Due to the limitations of regularizing the encoded latent distribution to match the prior
distribution, an alternative approach to design generative auto-encoders is proposed to fit the
latent distribution with a parameterized generative model. In this approach, data samples
can be generated by drawing latent samples from the parameterized latent distribution and
decoded with the decoder. The latent generative model can be learned jointly with the
reconstruction objective or separately after the auto-encoder is trained. Some models that
follow this approach will be discussed in Section 3.2. The parameterized latent distribution
approach has several advantages. Firstly, it allows arbitrarily complex distribution of the

latent variables, which enables the auto-encoder to reconstruct data faithfully without being

81



constrained. Secondly, due to the low dimension of latent variables, the generative model on
the latent space can be easy to train.

We study the approach of a parameterized latent distribution, and in particular, we
parameterize the latent distribution with normalizing flows. As a starting point, we replace
the simple prior distribution of VAEs with normalizing flows and train the auto-encoder and
the normalizing flow prior jointly with the VAESs’ objective. We carefully study this method
and make the surprising novel observation that in order to produce high-quality samples, it
is necessary to increase the weight of the reconstruction loss significantly. This corresponds
to decreasing the variance of the observational noise of the generative model at each pixel,
where we are assuming the data distribution is factorial Gaussian conditioned on the output
of the decoder, which yields the MSE as the reconstruction loss. It is important to note that
increasing this weight alone without access to a trainable prior does not consistently improve
generation quality. We show that as this weight increases, we approach a vanishing noise
limit that corresponds to a deterministic auto-encoder. This leads to a new algorithm we
call Generative Latent Flow (GLF), which combines a deterministic auto-encoder that learns
a mapping to and from a latent space and a normalizing flow that matches the standard
Gaussian to the distribution of latent variables of the training data produced by the encoder.

Our study in this chapter makes several contributions:

e We carefully study the effects of equipping VAEs with a normalizing flow prior on

image generation quality as the weight of the reconstruction loss is increased.

e ii) Based on this finding, we introduce Generative Latent Flow, which uses auto-

encoders instead of VAEs.

e Through standard evaluations, we show that our proposed model achieves state-of-
the-art sample quality among competing AE based models, and has the additional

advantage of faster convergence

82



3.2 Related Work

In general, in order for an AE based model with an encoder-decoder structure to generate
new samples resembling the training data distribution, two criteria need to be ensured: (a)
the decoder is able to produce a good reconstruction of a training image given its encoded
latent variable z, and (b) the empirical latent distribution ¢(z) of z’s returned by the en-
coder is close to the prior p(z). In VAEs, the empirical latent distribution is often called
aggregated or marginal posterior: ¢(z) = Ex~p,,,, [¢(2z][x)]. While (a) is mainly driven by
the reconstruction loss, satisfying criterion (b) is more complicated. Intuitively, criterion (b)
can possibly be achieved by designing mechanisms that either modify the empirical latent
distribution ¢(z), or conversely modify the prior p(z). There is plenty of previous work in
both directions.

Modifying the empirical latent distribution q(z): In the classic VAE model,
Dx1,lq(z|x)||p(z)) in the ELBO loss can be decomposed as Dky,[¢(z)]|p(z)) plus a mutual
information term as shown in Hoffman and Johnson [2016]. Therefore, VAEs modify the
marginal distribution of latent variables ¢(z) indirectly through regularizing the variational
posterior distribution ¢(z|x). Several modifications to VAE’s loss [Chen et al., 2018b, Kim
and Mnih, 2018], which are designed for the task of unsupervised latent disentanglement, put
a stronger penalty specifically on the mismatch between ¢(z) and p(z), where p(z) is prede-
termined (e.g., i.i.d Gaussian). There are also attempts to incorporate normalizing flows into
the encoder to provide more flexible approximate posteriors [Rezende and Mohamed, 2015,
Kingma et al., 2016]. However, empirical evaluation shows that VAEs with flow posteriors
do not reduce the mismatch between ¢(z) and p(z) [Rosca et al., 2018]. Furthermore, as of
yet, all these modifications to VAEs have not been shown to improve generation quality.

Adversarial auto-encoders (AAEs) [Makhzani et al., 2015] and Wasserstein auto-encoders
(WAESs) [Tolstikhin et al., 2017] use an adversarial regularizer or maximum mean discrepancy

(MMD) regularizer to force g(z) to be close to p(z). In AAE, in addition to the auto-encoder

83



which is trained by the reconstruction objective, there is an additional latent discriminator
that tries to distinguish between samples from the prior p(x) and samples from the encoder,
with an adversarial objective. Note that compared to GANs, AAEs move the adversary
from the input (pixel) space to the latent space, where p(z) may have a nice shape with a
single mode (for a Gaussian prior), in which case the task should be easier than matching an
unknown, complex, and possibly multi-modal distributions as usually done in GANs. WAEs
propose to minimize the MMD between samples from p(x) and ¢(z), which has an unbiased
U-statistic estimator that can be optimized with gradient descent. AAEs and WAEs are
shown to improve generation quality, as they generate sharper images than VAEs do.

Modifying the prior distribution p(z): An alternative to modifying ¢(z) is adopting
a trainable prior. VampPrior [Tomczak and Welling, 2018] uses a mixture of encoders to
represent the prior. However, this requires storing training data or pseudo-data to generate
samples at test time. Methods involving the same idea of approximating ¢(z) using a sampled
mixture of posteriors during training include [Bauer and Mnih, 2018, Klushyn et al., 2019].
This is a natural way to let the prior match ¢(z). However, these methods have not been
shown to improve generation quality. Takahashi et al. [2019] use the likelihood ratio estimator
to train a prior distribution. However, at test time, the aggregate posterior is used for
sampling in the latent space.

A large number of previous or concurrent work can be categorized as two-stage ap-
proaches, where an auto-encoder (or VAE) is trained first, and then a generative model on
the latent space is trained with the fixed encoder. Two-stage VAE [Dai and Wipf, 2019] in-
troduces another VAE on the latent space defined by the first VAE to learn the distribution
of latent variables. VQ-VAE and its follow-up models [Van Den Oord et al., 2017, Razavi
et al., 2019, Esser et al., 2021b] first train a vector-quantized auto-encoder with discrete
latent variables and then fits an auto-regressive prior to the latent space. GLANN [Hoshen

et al., 2019] learns a latent representation by GLO [Bojanowski et al., 2017] and matches

84



the densities of the latent variables with an implicit maximum likelihood estimator [Li and
Malik, 2018]. RAE+GMM [Ghosh et al., 2019] trains a regularized auto-encoder (which is
an auto-encoder with a constraint on the Lo norm of latent variables) and fits a mixture
of Gaussian distribution on the latent space. NCP-VAE [Aneja et al., 2021] propose an
energy-based prior defined by the product of a base prior distribution and a re-weighting
factor, designed to bring the base closer to the aggregate posterior. The re-weighting factor
is trained by noise contrastive estimation. All these methods have been shown to improve
the quality of the generated images.

VAE with normalizing flows: We note that modifications of VAEs with a normalizing
flow posterior have been extensively studied. In contrast, VAEs with flow prior have attracted
much less attention. [Huang et al., 2017] briefly discusses this model to solve the distribution
mismatch in the latent space, and recently [Xu et al., 2019] shows the advantages of learning
a flow prior over learning a flow posterior. However, these papers only focus on improvements

in the data likelihood.

3.3 Combining Normalizing Flows with AE-based Models

In this section, we discuss the combination of normalizing flow priors with auto-encoder
based models in detail. We first introduce VAEs with normalizing flow prior and present
some novel observations with respect to this model. Later we propose Generative Latent

Flow (GLF) to further simplify the model and improve performance.

3.3.1 VAFEs with Normalizing Flow Prior

We can easily replace the simple prior distribution in the original setting of VAEs with a
learnable prior parameterized by deep networks. In particular, when we use a normalizing
flow as the prior distribution, the training objective (ELBO) can be explicitly obtained due

to the fact that we can tractably compute the marginal density of a normalizing flow model.

85



To derive the ELBO with a normalizing prior, we start by writing the ELBO with a general

prior p;(x) with parameter 7:

Ly,6.1(%) = Egrgy (zx) 108 po(X]2)] — Dk (46(2[%)[|py(2)) 51)

= E,qy(alx) [108Pg(x]2) +1og py(z) — log 4y (z[x)] .

The first term is related to the reconstruction loss, while the last two terms can be combined
as Dk [qy(2[x) [Py (2)).

We can also introduce an extra hyper-parameter > 0 for future reference. 3 controls the
relative weight of the reconstruction loss and the KL divergence loss, and write the objective

as

£9’¢7n75(x) = EZN%(Z‘X) [ﬁ -log py(x|z) + log py(z) — log q¢(z|x)] ) (3.2)

Note that 8 = 1 corresponds to the original ELBO. When [ # 1, the expression may not
be a valid lower bound for the log likelihood, but it is still frequently used to train VAEs
[Higgins et al., 2016]. In the standard formulation of VAEs, the generative model py assumes
an independent Gaussian distribution with variance 1 at each pixel. The parameter S allows
us to adjust this variance as 1//.

If we introduce a normalizing flow f;, for the prior distribution, then the prior p, becomes

(@) = oy (o) e (2221, 33)

where pg is the standard Gaussian density. Substituting this prior into Equation 3.2, we

86



obtain Ly 4 , for VAEs with flow prior:

Lo.¢.n,5(x) = Egy(zlx) |8 log py(x|z) + log po (fy(z)) + log

det <8fgz(z)> ‘ “log q¢(z|x)} .

(3.4)

The second and third terms together are the log-likelihood of z under the prior distribution
modeled by the flow. The last term corresponds to the entropy of the posterior distribution
returned by the encoder. Both the VAE and the normalizing flow are trained by maximizing
Ly pn,p over all training samples.

Previous work on VAEs with a flow prior did not consider tuning § (which means the
reconstruction loss and the KL loss are weighted equally) as they focused on comparing the
obtained log likelihoods with those from plain VAEs. However, we observe that when g =1,
VAEs with a flow prior do not significantly improve the generation quality. The reason might
be that although p;(z) is matched with g4(z) due to the flow transformation, the decoder is
not good enough to reconstruct sharp images (i.e, criterion (a) in Section 3.2 is not ensured).
In contrast, we find that increasing 8 in the objective produces samples with significantly
higher quality. Intuitively, a larger weight on the reconstruction loss forces the decoder to
produce sharper reconstructed images, while the normalizing flow prior is flexible enough to
match the latent distribution.

To the best of our knowledge, we are the first to observe such a relation between the
weight of the reconstruction loss and the generation quality of VAEs with flow prior. As
increases, two things occur, as demonstrated empirically in Section 3.4. First, the estimated
variances from the encoder decrease, and second the generation quality consistently improves.
In the limit, as the posterior variance goes to zero, we obtain a deterministic encoder, leading
to a deterministic auto-encoder and a normalizing flow that is used to match the distribution

of the latent variables obtained from the data.

87



3.3.2 Generative Latent Flow

We consider the objective of VAEs with a flow prior in Equation 3.2 when VAE is replaced by
an auto-encoder. In an auto-encoder, denoting E as the encoder, z = E¢(X) is deterministic
so that q¢(z|x) in Equation 3.2 becomes a delta distribution and the entropy term can be

removed. The overall training objective is then minimizing

Ly 5(%) =B Lrecon (x, Gy (B (%)) + Lrr (5 (B (%)), (3.5)

where Gy is the decoder, the reconstruction loss Lrecon (X, Gy (E¢ (x))) corresponds to the
negative log likelihood of the generative model —logpy(x|z), and the prior negative log
likelihood term Ly, ( In (E¢ (x))) corresponds to — log p,(z), which is the negative of the

second and the third term of Equation 3.2:

—logpy(z) = —log po(fy(z)) — log 0z

dor (222)) ‘ . (36)

As noted before, larger 8’s yield better reconstruction results, in which case the parameters
of the auto-encoder are affected almost exclusively by Lyrecon, while Ly, only affects the
parameters 6 of the normalizing flow. Therefore, optimizing Equation 3.6 with extremely

large [ is approximately equivalent to optimizing

LG 5(%) = B+ Lrecon (%, Gy (Eg (%)) + LxLL (£ (s8 [y (¥)])) (3.7)

where sg-] is the stop gradient operation. The weight parameter  is no longer needed
because the two loss terms affect independent sets of parameters. We name the model
trained by Equation 3.7 as Generative Latent Flow (GLF), to highlight that our model
applies normalizing flows on latent variables. We call the model trained by Equation 3.2,

without stopped gradient, regularized GLF, since the flow acts as a regularizer on the

88



Figure 3.1: Ilustration of the GLF model. The red arrow contains a stop gradient operation.

encoder. See Figure 3.1 for an illustration of the GLF model.

Necessity of stopping the gradients: The stop gradient operation is necessary when
using deterministic auto-encoders. In VAEs with flow prior, the entropy term, which encour-
ages the posterior to have large variance, prevents the degeneracy of the z’s. However, when
using a deterministic encoder, if we let gradients of L7, backpropagate into the latent vari-
ables, training can lead to degenerate z’s produced by the encoder Ey4. This is because fy
has to transform the z’s to unit Gaussian noise, so the smaller the scale of the z’s, the larger
the magnitude of the log-determinant of the Jacobian. Since there is no constraint on the
scale of the output of Ey, the Jacobian term can dominate the entire objective. While the
latent variables cannot become exactly 0 because of the presence of the reconstruction loss,
the extremely small scale of z may cause numerical issues that lead to severe fluctuations. In
summary, we stop the gradient of Ly, at the latent variables, preventing it from modifying
the values of z and affecting the parameters of the encoder. We demonstrate the issues with

regularized GLF in Section 3.4.

89



3.4 Experimental Results

To demonstrate the performance of our proposed method, we present both quantitative
and qualitative evaluations on four commonly used datasets for generative models: MNIST
[Lecun, 2010], Fashion MNIST [Xiao et al., 2017, CIFAR-10 [Krizhevsky et al., 2009] and
CelebA [Liu et al., 2015]. Throughout the experiments, we use 20-dimensional latent vari-
ables for MNIST and Fashion MNIST, and 64-dimensional latent variables for CIFAR-10
and CelebA.

Lucic et al. [2018] adopted a common network architecture based on InfoGAN [Chen et al.,
2016] to evaluate GANs. In order to make fair comparisons without designing arbitrarily
large networks to achieve better performance, we use the generator architecture of InfoGAN
as our decoder’s architecture, and the encoder is set symmetric to the decoder. For the flow
applied to the latent variables, we use four affine coupling blocks, where each block contains
three fully connected layers, each with £ hidden units. For MNIST and Fashion MNIST,
k = 64, while for CIFAR-10 and CelebA, k = 256. Note that the flow only adds a small
parameter overhead on the auto-encoder (less than 3%).

We use the FID score [Heusel et al., 2017] introduced in Section 1.2.4 to evaluate the
sample quality. In addition, we use the precision and recall metric [Sajjadi et al., 2018],
which can assess both the quality and diversity of generated samples.

We present our main results in Section 3.4.1, where we include both quantitative and
qualitative results of our model. In Section 3.4.2, we carefully study several closely correlated
methods, including VAEs with flow prior, GLF, and regularized GLF. In Section 3.4.3, we

present the experimental settings for reproduction purposes.

3.4.1 Main Results

Table 3.1 summarizes the main results of this work. We compare the FID scores obtained

by GLF with the scores of the VAE baseline and several existing AE based models that are
90



(a) MNIST (b) FMNIST (¢c) CIFAR-10

(d) CelebA (¢) CelebA-HQ

Figure 3.2: Randomly generated samples from our method trained on different datasets.

claimed to produce high quality samples. Instead of directly citing their reported results, we
re-ran the experiments because we want to evaluate them under standardized settings so that
all models adopt the same AE architectures, latent dimensions, and image pre-processing.
We report the results of VAE+flow prior/posterior with = 1. For other methods, we
largely follow their proposed experimental settings. Details of each experiment are presented
in Section 3.4.3.

Note that the authors of WAE propose two variants, namely WAE-GAN and WAE-
MMD. We only report the results of WAE-GAN, as we found it consistently outperforms
WAE-MMD. Note also that GLANN [Hoshen et al., 2019] obtains impressive FID scores,

but it uses perceptual loss [Johnson et al., 2016] as the reconstruction loss, while other

91



Table 3.1: FID scores obtained from different AE-based generative models. For our reported
results, we executed 10 independent trials and report the mean and standard deviation of
the FID scores. Each trail is computing the FID between 10k generated images and 10k real

images.

MNIST Fashion CIFAR-10  CelebA
VAE 282+03 H7.5+£04 1425+£06 71.0+£0.5
WAE-GAN 124+£0.2 31504 931£05 66.5£0.7
Two-Stage VAE 109+0.7 26.1+£09 96.1£09 652+0.8
RAE + GMM 10.8+0.1 2514+02 91.6+£06 57.8+0.4
VAE+flow prior 283+0.2 51.8+£0.3 1104+£05 543+£0.3
VAE+flow posterior 26.7+0.3 55.1+£0.3 143.6+0.8 67.9+0.3
GLF (ours) 82+01 21.3+02 883404 53.2+0.2
GLANN with perceptual loss 8.6 +0.1 13.0+0.1 46.54+0.2 46.34+0.1
GLF+perceptual loss (ours) 5.8 £0.1 10.3 +£0.1 44.6 £0.3 41.8 £0.2

models use MSE loss. The perceptual loss is obtained by feeding both training images and
reconstructed images into a pre-trained network such as the VGG network and computing
the L distance between some of the intermediate layers’ activation. We also train our
method with perceptual loss and compare it with GLANN in the last two rows of Table 3.1.

As shown in Table 3.1, our method obtains significantly lower FID scores than competing
AEFE based models across all four datasets. In particular, GLF greatly outperforms VAE+flow
prior with the default setting of 8 = 1. We also confirm that VAE+flow posterior cannot
improve generation quality. Perhaps the competing model with the closest performance to
ours is RAE4+GMM, which shares some similarities with GLF in that both methods fit the
density of the latent variables of an AE explicitly.

To compare our method with GANs, we also include the results from [Lucic et al., 2018]
in Table 3.2. In [Lucic et al., 2018], the authors conduct standardized and comprehensive
evaluations of representative GAN models with large-scale hyper-parameter searches, and
therefore, their results can serve as a strong baseline. The results indicate that our method’s
generation quality is competitive with that of carefully tuned GANSs.

In Table 3.3, we present the Precision and Recall scores of our method and several

92



Table 3.2: FID score comparisons of GANs and GLF

MNIST Fashion CIFAR-10  CelebA
MM GAN 9.8+£0.9 296+1.6 72.7£3.6 65.6+4.2
NS GAN 6.8£05 26516 585£19 55.0%£3.3
LSGAN 7806 30.7+22 87.1£47.5 539428
WGAN 6.7+04 215+£1.6 55.2+£23 41.3+£20
WGAN GP 20350 245+21 558%£09 303x+1.0
DRAGAN 7604 277+£1.2 69.8£2.0 423+3.0
BEGAN 13110 229+£09 7144+16 389+£09
GLF (ours) 82401 21.34+0.2 88.3+£04 53.24+0.2
GLF+perceptual loss (ours) 5.8+0.1 10.3+0.1 446+0.3 41.84+0.2

Table 3.3: Evaluation of sample quality by precision/recall.

MNIST Fashion CIFAR-10 CelebA
WAE-GAN (0.98,0.96)  (0.90,0.83)  (0.41, 0.72) 0.50, 0.51)
Two-stage VAE (0.98,0.97)  (0.94,0.84)  (0.38, 0.66) 0.45, 0.55)
RAE+CGMM (0.99,0.97)  (0.92,0.92)  (0.37, 0.73) 0.33, 0.44)
GLF (ours) (0.98, 0.98)  (0.932, 0.92) (0.48,0.76)  (0.54, 0.61)
GLANN+perceptual loss (0.97, 0.98) 0.985, 0.963) (0.860, 0.825) (0.574, 0.681)
GLF+perceptual loss (ours) (0.99, 0.99) (0.99, 0.98) 0.76, 0.85) 0.76, 0.78)

competing methods. The two numbers in each entry are Fg, F% that capture recall and
precision, respectively. See [Sajjadi et al., 2018] for more details. Higher numbers are
better. As shown in the table, GLF obtains state-of-the-art Precision and Recall scores
across all datasets, indicating that our method outperforms competing methods in terms of
both sample quality and diversity.

Some qualitative results are shown in Figure 3.2. Besides samples of the datasets used
for quantitative evaluation, samples of CelebA-HQ [Karras et al., 2017] with the larger size
of 256 x 256 are also included to show our method’s ability to scale up to images with higher
resolution. Qualitative results show that our model can generate sharp and diverse samples

in each dataset. In Figure 3.3, we show CelebA images generated by linearly interpolating

two sampled random noise vectors. The smooth and natural transition shows that our model

93



Figure 3.3: Random noise interpolation in the noise space of GLF on CelebA dataset

can generate samples that have not been seen during training. To provide further evidence
that our model does not overfit or ‘memorize’ the training set, we show the nearest neighbors
in training set for some generated samples in Figure 3.4.

We also observe that samples from models trained with perceptual loss have higher
quality. We present samples from models trained with perceptual loss in Figure 3.5.

Training time: Besides better performance, our method also has the advantage of faster
convergence among competing methods such as GLANN and Two-stage VAE. In Table 3.4,
we compare the number of training epochs to obtain the FID scores in Table 3.1. We
also compare the per epoch training clock time in Table 3.5. Note that for methods using
perceptual loss, the per epoch training time is longer because VGG activations need to be
computed. These two tables show that GLF needs much shorter training time than the
two competing methods. In GLF, training the flow does not add much computational time
due to the low dimensionality. The combined results indicate that GLF requires much less

training time while generating samples with higher quality.

94



5
l

6
7
l...f
2
4
6

.-"

g
)
6
7
4
e
G
¢
7

aMmQNiqm—m
{M%&Nlﬂﬂ#m
AN NIw—N
LCVvesaONLaon—UnN

(a) MNIST (b) CelebA

Figure 3.4: Some randomly generated samples are presented in the leftmost column in
each picture. The other 5 columns of each picture show the top 5 nearest neighbors of the
corresponding sample in the training set.

Table 3.4: Number of training epochs for Two-stage VAE, GLANN, and GLF

MNIST /Fashion CIFAR-10 CelebA

Two-stage VAE First/Second 400/800 1000/2000 120/300
GLANN First/Second 500/50 500/50 500/50
GLF 100 200 40

3.4.2  Comparisons: GLF vs. Regularized GLF and VAE+flow Prior

As discussed in Section 3.3, we underline the novel finding regarding the relationship between
the weight on the reconstruction loss and the sample quality of VAEs with flow prior. In
this section, we present detailed experiments on this relation. We train VAEs+flow prior
on CIFAR-10 for different choices of 3, plus one with a learnable 5 [Dai and Wipf, 2019].
We record the progression of FID scores of these models in Figure 3.6 (a). In Figure Figure
3.6 (b), we plot the entropy term, which is the last term in Equation 3.4, the objective of

VAE+flow prior. The entropy is expressed as — Z = 1 log(cj)/2, where o is the standard
95



(a) MNIST (b) FMNIST

(¢) CIFAR-10 (d) CelebA

Figure 3.5: Randomly generated samples from our method with perceptual loss.

deviation of the approximate posterior on the jth latent variable. Higher entropy means that
the latent variables have lower variances. In Figure 3.6(c), we plot the NLL loss. We omit
the results for § = 1 because the obtained FID scores are too high to fit the scale of the
plot. Settings for the experiments in this subsection can be found in Section 3.4.3.

From Figure 3.6 (a), we clearly observe the trend that the generation quality measured
by FID scores improves as 3 increases. We also observe that as f increases, the performance
gap between VAE+flow prior and GLF closes, indicating that GLF captures the limiting
behavior of VAE+flow prior. We also find that learnable 3 is not effective, probably due to
the relatively small values of 5 at the early stages of training. When £ is large, as indicated by
Figure 3.6 (b), the posterior variances of VAEs become very small, so that effectively we are
training an AE. For example, as shown in Figure 3.6 (b), when 8 = 400, the corresponding
average posterior variance is around 10~%. This motivates us to use a deterministic auto-

96



Table 3.5: Per-epoch training time in seconds

MNIST /Fashion CIFAR-10 CelebA

2-stage VAE 1st/2nd 5/2 6/2 60/28
GLF 10 13 108
GLANN with perceptual loss 14 16 292
GLF with perceptual loss 16 19 343

Figure 3.6: (a) Record of FID scores on CIFAR-10 for VAEs+flow prior with different values
of B and GLF. (b) Record of entropy losses for corresponding models. (c¢) Record of NLL
losses for corresponding models.

encoder in GLF, which as we have said above, can be seen as the vanishing observational
variance limit of VAE+flow prior. It is important to note that the relation between § and
generation quality only exists for VAEs with a trainable prior (such as normalizing flow), as
we verify empirically that increasing $ on plain VAEs leads to worse FID scores.

As discussed in Section 3.3.2, training regularized GLF is unstable because of the degen-
eracy of the latent variables driven by the NLL loss. We empirically study the effect of latent
regularization as a function of § and present results in Figure 3.7. For low values of g =1
and 10, the NLL loss completely dominates the learning signal, and the reconstruction loss
quickly diverges. Therefore we omit them in the plot. For larger values of 5 = 50,100,400
we observe that the NLL loss decreases to a negative value of a very large magnitude, and
although overall performance is reasonable, it oscillates quite strongly as training proceeds.

In contrast, for GLF, where the flow does not modify z, the NLL loss does not degenerate,
97



Figure 3.7: (a) Record of FID scores on CIFAR-10 for regularized GLF with different values
of fand GLF. 8 = 1 and 10 are omitted because they lead to divergence in the reconstruction
loss. (b) Record of reconstruction loss for the corresponding models. (c¢) Record of NLL loss
for the corresponding models.

resulting in stable improvements in FID scores as training progress.

In contrast to regularized GLF, which uses a deterministic encoder, no degeneracy in
the latent variables is observed for VAE+flow prior, thanks to the noise introduced in the
stochastic encoder and the corresponding entropy term. Indeed, Figure 3.6 (c) shows that
the training of VAE+flow prior does not over-fit the NLL loss, as opposed to regularized GLF
where severe over-fitting to NLL loss occurs, as shown in Figure 3.7 (¢). Comparing Figure
3.6 (a) and 3.7 (a), we observe that unlike regularized GLF, VAE+flow prior does not suffer
from divergence or fluctuations in FID scores, even with relatively small 5. In summary,
the results of FID scores show that regularized GLF is unstable, while as  increases, the
performance of VAE+flow prior converges to that of GLF. Note that although GLF only
slightly outperforms VAE-+flow prior, even when [ is very large, it has the advantage that

there is no need to tune j.

3.4.3 FExperimental Settings

Network Architectures:
In this section we provide Table 3.6 that summarizes the auto-encoder network structure.

98



Table 3.6: Network structure for auto-encoder based on InfoGAN

Encoder Decoder

Input x Input z

4 x 4 Convgy, ReLLU FC nz — 1024, BN, ReLLU

4 x 4 Convygg, BN, ReLLU FC 1024 — 128 x M x M, BN, ReLU
Flatten, FC 128 x M x M — 1024, BN, ReLU 4 x 4 Deconvgy, BN, ReLU

FC 1024 — nz 4 x 4 Deconvyag, Sigmoid

The network structure is adopted from InfoGAN [Chen et al., 2016], and the difference
between the networks we used for each dataset is the size of the fully connected layers,
which depends on the size of the image. All convolution and deconvolution layers have
stride = 2 and padding = 1 to ensure the spatial dimension decreases/increases by a factor
of 2. M is simply the size of an input image divided by 4. Specifically, for MNIST and
Fashion MNIST, M = 7; for CIFAR-10, M = 8; for CelebA, M = 16. BN stands for batch
normalization.

For VAEs, the final FC layer of the encoder will have doubled output size to return both
the mean and standard deviation of latent variables.

Details of Experiments:

Here we present the details of our experimental settings for results in Table 3.1. Since
the settings for MNIST and Fashion MNIST are the same, we only mention MNIST for
simplicity. For GLANN, we directly cite the results from Hoshen et al. [2019], as their
experimental settings is very similar to ours.

We use the original images in the training sets for MNIST, Fashion MNIST and CIFAR-
10. For CelebA, we follow the same pre-processing as in Lucic et al. [2018]: center crop to
160 x 160 and then resize to 64 x 64. We normalize the pixel values to [0, 1], without adding
noise to pixels (i.e, no de-quantization).

Settings for training GLF: For all datasets (except CelebA-HQ), we use batch size

256 and Adam optimizer with initial learning rate 10~2 for the parameters of both the AE

99



and the flow. We add a weight decay 2 x 107 to the optimizer for the flow. For MNIST,
we train our model for 100 epochs, with learning rate decaying by a factor of 2 after 50
epochs. For CIFAR-10, we train our model for 200 epochs, with the learning rate decaying
by a factor of 2 every 50 epochs. For CelebA, we train our model for 40 epochs with no
learning rate decay.

For GLF with perceptual loss, we compute the perceptual loss as suggested in [Hoshen
and Wolf, 2018]. See https://github.com/facebookresearch/NAM/blob/master/code/
perceptual_loss.py for their implementation. Other settings are the same.

For CelebA-HQ dataset, we adopt our AE network structure based on DCGAN [Radford
et al., 2015]. Note that this is a relatively simple network for high resolution imgaes. We
use batch size 64, with initial learning rate 1073 for both the AE and the flow. We train our
model for 60 epochs, with learning rate decaying by a factor of 2 after 40 epochs.

Settings for training VAEs and VAE variants: We adopt common settings for
our reported results of VAE, VAE+flow prior and VAE+flow posterior. We use 8 = 1 for all
three VAE variants. We still use batch size 256, and Adam optimizer with initial learning
rate 1073 for both the VAE and the flow, if applicable. We find VAEs need longer time to
converge, so we double the training epochs. We train MNIST for 200 epochs, with learning
rate decaying by a factor of 2 after 100 epochs. We train CIFAR-10 for 400 epochs, with
the learning rate decaying by a factor of 2 every 100 epochs. We train CelebA for 80 epochs
with learning rate decaying by a factor of 2 after 40 epochs.

Settings for training two stage VAE: We adopt the settings in the original paper
[Dai and Wipf, 2019]. For all datasets, the batch size is set to be 64, and the initial learning
rate for both the first and the second is 10~%. For MNIST, the first VAE is trained for
400 epochs, with learning rate halved every 150 epochs; the second VAE is trained for 800
epochs with learning rate halved every 300 epochs. For CIFAR-10, 1000 and 2000 epochs

are trained for the two VAESs respectively, and the learning rates are halved every 300 and

100


https://github.com/facebookresearch/NAM/blob/master/code/perceptual_loss.py
https://github.com/facebookresearch/NAM/blob/master/code/perceptual_loss.py

600 epochs for the two stages. For CelebA, 120 and 300 epochs are trained for the two VAEs

respectively, and the learning rates are halved every 48 and 120 epochs for the two stages.

3.4.4 Settings for training RAE+GMM

The settings of batch size, learning rate scheduling and number of epochs for training RAE
are the same as those of GLF. The objective of the RAE is reconstruction loss plus a penalty
on the norm of the latent variable. Since the author does not report their choices for the
penalty coefficient v, we search over v € 0.1,0.5,1,2, and we find that 5 = 0.5 leads to the
best overall performances, and therefore we let v = 0.5. After training the RAE, we fit a
10-component Gaussian mixture distribution on the latent variables.

Settings for Experiments in Section 3.4.2: For all experiments in Section 3.4.2, we
use batch size 256 and initial learning rate 1073 for both AE and flow. We train all models

for 500 epochs with learning rates decaying by a factor of 2 every 150 epochs.

3.5 Conclusion

In this chapter, we introduce Generative Latent Flow, a novel generative model which uses
an auto-encoder to learn a latent space from training data and a normalizing flow to match
the distribution of the latent variables with the prior. Under standardized evaluations,
our model achieves state-of-the-art results in image generation quality and diversity among
several recently proposed auto-encoder based models. While we are not claiming that our
GLF model is superior to GANs, we do believe that it opens the door to realizing the potential
of AE based models to produce high-quality samples just as GANs do. Our proposed model
is motivated by our novel finding on the relation between large reconstruction weight and
generation quality of VAEs with normalizing flow prior. The finding itself is crucial, as it can
potentially motivate future work to study the trade-off between reconstruction and density

matching in the objective of VAEs with learnable priors.

101



The GLF model can be seen as a symbiotic composition of auto-encoder and normalizing
flows. Specifically, on the one hand, the auto-encoder provides a latent space that is low
dimensional and unstructured, which makes the training of normalizing flows significantly
easier than training directly on data space. On the other hand, the normalizing flow accu-
rately models the distribution of latent variables, providing a powerful prior that is easy to

sample from and allowing the auto-encoder to use its full potential to reconstruct data.

102



CHAPTER 4
EXPONENTIAL TILTING OF GENERATOR MODELS WITH
ENERGY-BASED MODELS

This chapter introduces the idea of exponential tilting of a base generative model with an
energy-based model. The EBM can refine the distribution modeled by the base generative
model and improve the sample quality. We will begin with motivating our approach and
introducing related work. Then we will give a detailed description of our method, includ-
ing the cases when the base generative model is a normalizing flow or VAE, and present
experimental results.

The material of this chapter is based on Xiao et al. [2020a] and Xiao et al. [2021a].

4.1 Motivation and Introduction

In Chapter 2, we mentioned that likelihood-based deep generative models, which are usually
trained by maximum likelihood, enjoy the benefits that their training is stable and they
cover modes in data more faithfully by construction. The reason is that maximum likelihood

corresponds to minimizing the forward KL divergence:

pdata<x) dx. (41)

min Dk, (Pdata (%) [[g (x)) = / Pdata(X) 108 py(x)

From this objective, we see that training will be heavily penalized if py(x) = 0 at where
Pdata(X) # 0. In other words, the objective will enforce the model py(x) to spread out over
all the support of pgaia(X), resulting in good mode coverage. However, the same objective
may cause a major disadvantage of likelihood-based generative models: they tend to assign
a high probability to regions with low density under the data distribution. The reason is
that the real data distribution is very complicated, while parameterized models have limited

capacity even when parameterized by a deep neural network, and enforcing a relatively
103



: : Data Distribution
/\_/-\ VAE

Figure 4.1: illustration of such a density mismatch between true data distribution and a
parametrized VAE model. Red crosses are training data.

Figure 4.2: Samples from NVAE, one of the strongest VAE models, trained on CelebA-HQ
dataset. Although the overall shape of human faces is good, we observe undesirable artifacts
especially on the boundary of faces.

simple distribution to cover all the support of a complex distribution will result in severe
density mismatch. This mismatch often results in blurry or corrupted samples generated by
likelihood-based models. It also explains why likelihood-based generative models often fail
at out-of-distribution detection [Nalisnick et al., 2018]. Figure 4.1 gives an illustration of
such a density mismatch for a VAE model, where we see that although the VAE roughly
captures the shape of the real data distribution, the first mode of the modeled distribution
actually belongs to a low-density region of the true data distribution. As a result, even the
state-of-the-art VAE models [Vahdat and Kautz, 2020] cannot generate good samples (see
Figure 4.2). Similar observations are made on other likelihood-based generative models, such
as normalizing flows.

Among likelihood-based models, EBMs model the unnormalized data density by assign-
ing low energy to high-probability regions in the data space [Xie et al., 2016, Du and Mor-

datch, 2019]. EBMs are appealing because they require almost no restrictions on network

104



architectures (unlike normalizing flows) and are therefore potentially very expressive. They
also suffer less from the issue of assigning high likelihood to non-data-like regions compared
to other likelihood-based generative models, as they exhibit sharper sample quality and
out-of-distribution generalization [Du and Mordatch, 2019]. The reason is that, during the
maximum likelihood training of EBMs, areas with high probability under the model but low
probability under the data distribution are penalized explicitly, as discussed in Section 2.3.
However, training and sampling EBMs usually requires MCMC, which can suffer from slow
mode mixing and is computationally expensive when neural networks represent the energy
function. In particular, gradient-based MCMC sampling in the data space generally does not
mix. The data distribution is typically highly multi-modal, and to approximate such a dis-
tribution, the energy function needs to be highly multi-modal as well. When sampling from
such a multi-modal density in the data space, gradient-based MCMC tends to get trapped in
local modes with little chance to traverse the modes freely. Without being able to generate
fair examples from the model, the estimated gradient of the maximum likelihood learning
can be very biased. As a result, previous EBM models only obtained limited success, even
on small images.

The difficulty of MCMC sampling can possibly be resolved by mapping the data into a
latent space and running MCMC in the latent space. For example, Hoffman et al. [2019]
observe that it is much more efficient to run an MCMC sampler in the latent space trans-
formed by a normalizing flow. Both VAE and normalizing flow models naturally come with a
latent embedding of data that has a single mode and has smooth geometry. The embedding
allows fast traversal of the data manifold by moving in the latent space and mapping the
movements to the data space.

The above arguments suggest a possible composition of VAEs or normalizing flows with
EBMs. The resulting model defines the generative distribution as the product of a base

generative model, which is either a VAE or normalizing flow, and an EBM component

105



Figure 4.3: High level illustration of the idea of exponential tilting with a VAE as the base
generative model.

defined in pixel space in the form of a correction, or an exponential tilting, of the base
model. Intuitively, the base model captures the majority of the mode structure in the data
distribution. However, it may still generate samples from low-probability regions in the data
space. Thus, the energy function focuses on refining the details and reducing the likelihood
of non-data-like regions. This is because in the negative training phase of EBMs, we sample
from the model itself and obtain non-data-like samples, whose likelihood is then reduced by
the energy function explicitly. The energy function defined in the pixel space also shares
similarities with the discriminator in GANs, which can generate crisp and detailed images.
Figure 4.3 gives a high level illustration of the idea, when the base generative model is a
VAE, which leads to the VAEBM model.

Moreover, we show that training the compositional model by maximizing the data like-
lihood easily decomposes into training the base model and the EBM component separately.
The model is trained using the standard maximimum likelihood approach, while the EBM

component requires sampling from the joint energy-based model during training. We show

106



that we can sidestep the difficulties of sampling from the joint model, by reparameterizing
the MCMC updates using the latent variables. This allows MCMC chains to quickly traverse
the model distribution and it speeds up mixing. As a result, we only need to run short chains
to obtain approximate samples from the model, accelerating both training and sampling at
test time.

Experimental results show that when equipped with a strong base model, our model
outperforms previous EBMs and state-of-the-art VAEs on image generation benchmarks,
including CIFAR-10, CelebA 64, LSUN Church 64, and CelebA HQ 256 by a large margin,
reducing the gap with GANs. We also show that our model faithfully covers the modes
in the data distribution while having fewer spurious modes for out-of-distribution data. In
particular, with the help of the powerful NVAE [Vahdat and Kautz, 2020], our VAEBM
model is the first successful EBM applied to large images.

In summary, this chapter makes the following contributions:

e We propose a new framework of generative models using the product of a VAE or

normalizing flow and an EBM defined in the data space.

e We show how training this model can be decomposed into training the base model

first, and then training the EBM component.

e We show how MCMC sampling from the model can be pushed to the base model’s

latent space, significantly accelerating sampling.

o We demonstrate state-of-the-art image synthesis quality among likelihood-based mod-
els, confirm complete mode coverage, and show strong out-of-distribution detection

performance.

107



4.2 Related Work

Our proposed framework is based on the exponential tilting of a base generative model by
an EBM. It shares similarity with previous work that builds connections between EBMs and
other generative models. Zhao et al. [2017], Che et al. [2020], Song et al. [2020b], Arbel
et al. [2020] formulate EBMs with GANs, and use the discriminator to assign an energy. In
particular, Che et al. [2020] proposed to sample from a EBM of the form

p) = pg(x)eP, (1.2

where pg is the implicit distribution defined by the generator GG, and D is the discriminator.
The model can be seen as a exponential tilting of pg, and the sampling is done by running
MCMC in the noise space by the mapping of x = G(z). Such a high level idea is closely
related to ours.

Our work is partially inspired by neural transport sampling [Hoffman et al., 2019]. For an
unnormalized target distribution, the neural transport sampler trains a flow-based model as a
variational approximation to the target distribution, and then samples the target distribution
in the space of latent variables of the flow-based model via change of variable. In the
latent space, the target distribution is close to the prior distribution of the latent variables
of the flow-based model, which is usually a unimodal Gaussian white noise distribution.
Consequently the target distribution in the latent space is close to be unimodal and is much
more conducive to the mixing and fast convergence of MCMC than sampling in the original
space. Nijkamp et al. [2022] is a simplified special case of this idea, where they learn the EBM
as a correction of a pre-trained flow-based model, so that they do not need to train a separate
flow-based approximation to the EBM. The idea of Nijkamp et al. [2022] is exactly the same
as Xiao et al. [2020a] and they were developed concurrently. However, we motivate the idea

from the perspective of energy-based refinement rather than neural transport MCMC. The

108



idea of neural transport MCMC relies on normalizing flows, because they need to compute
the tractable density to ensure valid sampling. However, due to their topology-preserving
nature, normalizing flows cannot easily transport complex multimodal data, and their sample
quality on images is limited. In Xiao et al. [2021a], we found that the exponential tilting of
VAE models leads to much improved sample quality.

A few previous works combine VAEs and EBMs in different ways from ours. Pang et al.
[2020] and Vahdat et al. [2018b,a, 2020] use EBMs for the prior distribution, and Han et al.
(2020, 2019] jointly learn a VAE and an EBM with independent sets of parameters by an
adversarial game.

Finally, as we propose two-stage training where the base model is trained first followed
by the training of the EBM, our work is related to post training of latent variable models.
Previous work in this direction learns the latent structure of pre-trained VAEs [Dai and
Wipf, 2019, Xiao et al., 2019, Ghosh et al., 2019], and sampling from learned latent distri-
butions improves sample quality. These methods cannot easily be extended to VAEs with
hierarchical latent variables, as it is difficult to fit the joint distribution of multiple groups
of variables. Our purpose in two-stage training is fundamentally different: we post-train an

energy function to refine the distribution in data space.

4.3 Formulation of Exponential Tilting with EBMs

In this section, we introduce the formulation of exponential tilting with EBMs. Recall from

Chapter 2.3 that we write the density function of an EBM in the following form:

1
pg(x) = Z_f_fg(x)’ (4.3)

109



where fp is the energy function and Zjy is the normalizing constant. More generally, EBMs

can have a parameterized base distribution g4(x), and we can write the model as

1 — X
Pp.g(x) = %%(x)e Jox), (4.4)

which can be seen as an exponential tilting of q¢(x). For example, in Noise Contrastive
Estimation introduced in Section 1.2.2, the base distribution q¢(x) is the noise distribution,
and the energy function is the re-weighting factor obtained from the binary classifier.

In this chapter, we propose to exponentially tilt base generative models, and therefore
q¢(x) will be another deep generative model such as a normalizing flow or a VAE. The

resulting model py 4 is a correction or refinement over gy (x).

4.3.1 Normalizing Flows as the Base Generative Model

We first discuss the case where normalizing flows are used as the base generative model.
Consider the exponential tilting model in Equation 4.4, where q¢(x) is a normalizing flow
and fp(x) is a free-form neural network. Note that the normalizing flow is defined by an
invertible transformation Fy; through a change of variables. Specifically, the normalizing flow
transforms z ~ qpz to x = F¢(z), and we can express the density in z-space in terms of the

density in x-space by the change-of-variable formula:

0(2) = 4,0, (1.5

where dz and dx are understood as the volumes of the infinitesimal local neighborhoods

around z and x respectively under the mapping x = Fjy(z). We can re-write Equation 4.5 as

q0(z)dz = q4(x)dx. (4.6)

110



We can apply the same change-of-variable to p97¢(x), and obtain a corresponding distri-
bution in the z-space. To do this, denote hg 4(z) to be the distribution of z under py 4(x)

in z-space, we have

1 _
ho.¢(2z)dz = pg 4(x)dx = %q(b(x)e Jo) gx. (4.7)

Applying the change-of-variable of q¢(x) in Equation 4.6, we obtain
1
hy,5(z) = ——qo(z)e0(Fo(=)), (4.8)

Therefore, we obtain an equivalent distribution in z-space, which is an exponential tilting
of the prior noise distribution gg(z). To obtain a sample from py 4(x), we can sample from
hg,(z) and apply the transformation Fy(z).

As discussed in Section 4.1, we let the normalizing flow capture the overall shape of data
distribution and use the exponential tilting technique to refine the model. Therefore, we first
pre-train the normalizing flow with maximum likelihood and then train the energy function
fo while keeping the flow fixed. We can train py 4(x) with fixed ¢* for Fyy by the following
gradient of log-likelihood:

VoLy=E dfg(x) dfy (X/)] : (4.9)

X~Pdata(X) [ 06 :| - EX/NPG,q{)* (x') [ 06

where samples from py 4+« can be drawn by transforming samples from h97¢(z) with Fy«, as
discussed above. We can draw samples from h97¢*(z) by running the following Langevin

dynamics

Ziy1 = Zf — %VZ (fg (F¢*(Z)) - logp()(z)) + \/Ew, W~ N(O, I) (4.10)

It is tempting to apply the above exponential tilting formulation to generator models,

111



such as VAESs, by replacing the transformation Iy with the generator. However, mathemat-
ically, exponential tilting of non-invertible generator model is more complicated, as p9,¢(x)
is not in closed form, and the distribution hg 4(z) requires evaluating an integral. There-
fore, exponential tilting of flow based model is more convenient. Nevertheless, due to the
strong invertible constraint on the structure of normalizing flow models, they cannot easily
transport complex multimodal data, and their sample quality on images is limited. It might
be a better idea to exponentially tilt generator models, which does better in modeling the
complex data distribution. In the next subsection, we will introduce the case where the base

distribution is a VAE.

4.3.2 VAEBM: VAFEs as the Base Distribution

Here we discuss the case when the base model of the exponential tilting framework is a
VAE, and we name this model VAEBM. Note that VAEs are latent variable models without
a tractable marginal distribution, and therefore the VAEBM model is also written in the form

of the joint distribution over (x,z). Formally, we define the generative model in VAEBM as

1 — X
Py.p(X,2) = %]%(X,z)e fol ), (4.11)

where py(x,2) = py(z)py(x|z) is a VAE generator and fy(x) is a neural network-based

energy function, operating only in the x space. Marginalizing out the latent variable z gives

1
Poolx) = 7 po(x,2)e 0V dz = ——pj(x)e X, (4.12)

where pg(x) is the (intractable) marginal distribution of the VAE.

Given a training dataset, the parameters of VAEBM, 6, ¢, can trained by maximizing

112



the marginal log-likelihood on the training data:

log pg,¢(x) = log py(x) — fo(x) —log Zy 4 (4.13)

> Eygy (zfx) 108 P (x[2)] — Dkr(ay(2|%)[[pg(2)) —fo(x) —log Zg 9, (4.14)

PAS

-~ v

Evae(X,’l/J,¢) LEBM (Xa0a¢)

where 1) denotes the parameter of the VAE’s encoder. Here we replace log p¢(x) with its
variational lower bound. Equation 4.14 forms the objective function for training VAEBM.
The first term corresponds to the VAE objective and the second term corresponds to training

the EBM component. Next, we discuss how we can optimize this objective.

4.8.8  Training of VAEBM

We mentioned that we want to pre-train the base generative model and then train the EBM
as a correction. In the case of VAEBM, the two-stage training is not only beneficial but also

necessary, as we will explain the difficulty of jointly training the VAE and EBM.

Difficulties of Joint Training:

The whole VAEBM in Equation 4.11 is a special case of EBM, so it can be trained by
maximum likelihood. The subtle thing is that the log partition function log Zy 4 depends on
both ¢ and 6. We show that log Zy 4 has the gradients

89 log ZH,¢ = EXNPQ#)(X) [—8@f9 (X)] and 8¢ log Z@@ = EXNPG,¢(X) [8¢ logp¢(x)] . (4.15)

The derivation is as follows. Recall that Zy 4 = [ p¢(x)e_f 6(X)dx. For the derivative of

113



log Zy 4 w.r.t. ¢, we have:

9 log Zp ¢ = 9 log (/p¢(x)e_f9(x)dx)

O ¢
_ Z;@ apgé")e—fe(x)dx
= %@ pqs(X)efe(X)aloga—];f(X)dx
= /pﬁ,gﬁ(X)aloga—];;b(X)dX
= Bxepp () {é?loga—zf(@} (4.16)

Similarly, it is easy to show that %log Zy gy = EXNp67¢(X7Z) [—%ﬁe—x)]. Intuitively, both
gradients encourage reducing the likelihood of the samples generated by the VAEBM model.
Since, pg 4 is an EBM, the expectation can be approximated using MCMC samples.

The first gradient in Equation 4.15 can be estimated easily by evaluating the gradient
of the energy function at samples drawn from the VAEBM model py 4(x) using MCMC.
However, the second term involves computing the intractable %log p¢(x). Estimating
% log pd)(x) requires sampling from the VAE’s posterior distribution, given model samples

x ~ pg 4(x). To see this, note that Equation 4.16 can be further expanded to:

0
8_<b logZy » = E

X~pg,¢(X)

B, / dlogpy(x, )
2/ ~py(2'|x) 0o :

which can be approximated by first sampling from VAEBM using MCMC (i.e., x ~ pg 4(x))
and then sampling from the true posterior of the VAE (ie., 2’ ~ py(2z'|x)). We cannot
directly draw samples from the true posterior, and approaches can be used to draw approx-
imate samples from py(z/[x): 1) We can replace py(z'|x) with the approximate posterior
q¢(z’ |x). However, the quality of this estimation depends on how well gy, (z'|x) matches the

true posterior on samples generated by pg’(b(x, z), which can be very different from the real

114



data samples; ii) alternatively, we can use MCMC sampling to sample z’ ~ p¢(z’ |x). To
speed up MCMC, we can initialize the z’ samples in MCMC with the original z samples that
were drawn in the outer expectation (i.e., X,z ~ py 4(x,2)). However, with this approach,
the computational complexity of the gradient estimation for the negative phase is doubled, as

we now require running MCMC twice, once for x,z ~ pg 4(x,z) and again for 7/ ~ p¢(z’|x).

Two-stage Training of VAEBM:

To avoid the computational complexity of estimating this term, for example with a second
round of MCMC, we propose a two-stage algorithm for training VAEBM. In the first stage,
we train the VAE model in our VAEBM by maximizing the Lyae(x, 0, ¢) term in Equation
4.14. This term is identical to the VAE’s objective, thus, the parameters ¢ and v are trained
with the usual ELBO. In the second stage, we keep the VAE model fixed and only train
the EBM component. Since ¢ is now fixed, we only require optimizing Lrpnm(X, 6, ¢) w.r.t.
0, the parameters of the energy function. The gradient of L(f) = Ex~p,... [LEBM(X, 0, 0)]

w.r.t. 0 is:

OpL(0) = ]EXdiata(X) (=0 fg (x)] + Ex~p97¢(x) [0gfg (x)], (4.17)

which decomposes into a positive and a negative phase.

We can entirely avoid the additional computational complexity and the complications of
estimating 8%5 log Zy 4, if we assume that the VAE is held fixed when training the EBM com-
ponent of our VAEBM. This way, we require running MCMC only to sample x ~ pyg 4(x, z)
to compute % log Zy 4.

Besides avoiding the difficulties of estimating the full gradient of log Zy 4, two-stage
training has additional advantages. As we discussed in Sectionapter 2.3, updating 6 is

computationally expensive, as each update requires an iterative MCMC procedure to draw

115



samples from the model. The first stage of our training minimizes the distance between the
VAE model and the data distribution, and in the second stage, the EBM further reduces
the mismatch between the model and the data distribution. As the pre-trained VAE py(x)
provides a good approximation to pgat,(X) already, we expect that a relatively small number
of expensive updates for training v is needed. Moreover, the pre-trained VAE provides
a latent space with an effectively lower dimensionality and a smoother distribution than
the data distribution, which facilitates a more efficient MCMC. We will discuss this in the

following section.

Reparameterized sampling in the negative phase:

For gradient estimation in the negative phase, we can draw samples from the model using
MCMC. Naively, we can perform ancestral sampling, first sampling from the prior p¢(z),
then running MCMC for pd)(x\z)e_ff’(x) in x-space. This is problematic, since pg(x|z) is
often sharp and MCMC cannot mix when the conditioning z is fixed.

To overcome the issue, we instead run the MCMC iterations in the joint space of z and x.
Furthermore, we accelerate the sampling procedure using reparameterization for both x and
the latent variables z. Recall that when sampling from the VAE, we first sample z ~ p¢(z)
from the prior and then sample x ~ Po (x|z). This sampling scheme can be reparameterized
by sampling from a fixed noise distribution (e.g., (€z,ex) ~ pe = N(0,I)) and deterministic

transformations T¢ such that
z="Tg(ez), x=Tj(a(ez), ex) = T (1§ (e2), ex). (4.18)

Here, T’ QZS denotes the transformation defined by the prior that transforms noise € into prior
samples z. When the prior is unit Gaussian, T(; is just the identity transformation. Tq)b(

represents the decoder that transforms noise ex into samples x, given prior samples z.

116



We can apply the same reparameterization when sampling from p97¢(x, z). This corre-

sponds to sampling (ex, €z) from the “base distribution”:

~Fo(TF(TE (e2).ex))

h9’¢ <€x, €Z> xX e DPe (€X7 6Z) ) (419>

and then transforming them to x and z via Eq. 4.18.
Here we will provide a derivation. Suppose we draw the re-parametrization variables

(€x, €z) ~ pe(€ex, €z). For convenience, we denote

Ty(ex, €) = (Tg(Tg(ez),eX),Tg(ez)> — (x,2). (4.20)

Since Ty is a deterministic and invertible transformation that maps (ex, €z) to (x,z), by the

change of variables formula, we can write

p¢(X, Z) :p€<T(;1(X,Z)> ) (421>

i (1)

where JT71 is the Jacobian of T' ¢_1. Consider a Gaussian distribution as a simple example:
@

if z ~ N (g, 0z) and x|z ~ N (ux(z), 0x(z)), then
zZ = T;(ez) = liz + 0z €z, X= Tg(ex, €z) = lx(z) + ox(z) - ex,
and

Ty (x,2) = [ox(z) "1, 05 1],

Recall that the generative model of our EBM is

T pplo) (122)

p9’¢(X, Z) =

117



We can apply the change of variable to py 4(x,z) to a distribution in (ex, €z) space:

o lex: €2) = Po g(Tplexs €2)) [det (T, (ex,e2) )| (4.23)
where Jr s is the Jacobian of Tj. Since we have the relation
Jprof=J;! (4.24)
for invertible function f, we have that
o o(exs €2) = Po.o(Ty(exs€2)) [det (T, (e5,€x)) | (4.25)
1
— = o To(Ty(ex.€2))
=7 o(Ty po(Ty(ex €2)) ‘det (JT¢ (ex,ez))‘ (4.26)
1 _ _
= Zg7¢e fG(T¢(€X7€z))p€(T9 L(x,2)) |det (JTel (x,z))’ ‘det (JT¢ (ex, ez)) ’
(4.27)
1
= e Tl (1,7 x, 1) (4.28)
0,0
_ Zl e~ oTslexea) p ey ), (4.29)
0,0

which is the distribution in Equation 4.19. After we obtained samples (ex,€z) from the
distribution in Equation 4.19, we obtain (x, z) by applying the transformation Ty in Equation
4.18. An illustration of VAEBM with reparametrization is shown in Figure

An alternative, but simpler explanation for the reparamterization with ex, €5 is also pre-
sented. Suppose we have x = T'(€) where € could be anything with known density p(e). Then
E[h(x)] = E[h(T(e))], for any function h. So [ h(x)p(x)dx = [ h(T(e))p(e)de, and with the
tilting: [ h(x)p(x)e/ Xdz = [ (T (e))e/T)p(e)de. So if we sample from e/ (1)) p(e) and
pass it through T'(¢), we can get a sample from the tilted distribution p(v)ef (v),

Note that €, and ex have the same scale, as pe (ex, €z) is a standard Normal distribution,

118



Figure 4.4: Our VAEBM is composed of a VAE generator (including the prior and decoder)
and an energy function that operates on samples x generated by the VAE. The VAE compo-
nent is trained first, using the standard VAE objective; then, the energy function is trained
while the generator is fixed. Using the VAE generator, we can express the data variable x as
a deterministic function of white noise samples €, and ex. This allows us to reparameterize
sampling from our VAEBM by sampling in the joint space of ¢ and ex.

while the scales of x and z can be very different. Thus, running MCMC sampling with
this reparameterization in the (ex, €z)-space has the benefit that we do not need to tune the
sampling scheme (e.g., step size in LD) for each variable. This is particularly helpful when
z itself has multiple groups, as in our case. We will compare sampling in (ex, €5)-space and

in (x,z)-space in the following paragraphs.

Comparison of Sampling in (e, €,)-space and in (x, z)-space:

Above we showed that sampling from hy, g(x,z) is equivalent to sampling from hy, g(ex, €z)
and applying the appropriate variable transformation. Here, we further analyze the connec-
tions between sampling from these two distributions with Langevin dynamics. Since each
component of x and z can be re-parametrzied with scaling and translation of standard Gaus-
sian noise, without loss of generality, we assume a variable ¢ (c can be a single latent variable

in z or a single pixel in x) and write

C= U+ o€

119



Suppose we sample in the € space with energy function f on c and step size . The update

for € is
€t+1 = € — gvef + \/ﬁwt, wt ~ N(O, I).

Now we plug €;4.1 into the expression of ¢ while noting that V¢f = oV f. We obtain

Cty1 =M+ 0641 =p+0 (Et - gvef + \/T_M>
2
g
=p+oe — Tnvcf+ no 2wy

Therefore, we see that running Langevin dynamics in (ex, €5)-space is equivalent to running
Langevin dynamics in (x,z)-space with step size for each component of z and x adjusted
by its variance. However, considering the high dimensionality of x and z, the step size
adjustment is difficult to implement.

The analysis above only considers a variable individually. More importantly, our latent
variable z in the prior follows block-wise auto-regressive Gaussian distributions, so the vari-
ance of each component in z; depends on the value of z_;. We foresee that because of this
dependency, using a fixed step size per component of z will not be effective, even when it
is set differently for each component. In contrast, all the components in (ex, €5)-space have
a unit variance. Hence, a universal step size for all the variables in this space can be used.

We will empirically compare sampling in (ex, €z)-space and in (x, z)-space in Section 4.4.

4.3.4  An Extension to the Training Objective of VAEBM

In the first stage of training VAEBM, the VAE model is trained by maximizing the training

data log-likelihood which corresponds to minimizing an upper bound on Dk, (Pdata (%) |[Pg (X))

120



w.r.t. ¢. In the second stage, when we are training the EBM component, we use the VAE
model to sample from the joint VAEBM by running the MCMC updates in the joint space of
ez and ex. Ideally, we may want to bring py(x) closer to py 4(x) in the second stage, because
when py(x) = pg 4(x), we will not need the expensive updates for §. We can bring pg(x)
closer to pg 4(x) by minimizing Dgy,(pg(%)|[pg,s(x)) with respect to ¢ which was recently
discussed in the context of an EBM-interpretation of GANs by Che et al. [2020]. To do so,
for one training step of updating ¢, we assume the target distribution p97¢(x) is fixed and

create a copy of ¢, named ¢', and we update ¢’ by the gradient:

Ve DKL (g (%)]P6,6(%) = Vg Exy () [To(x)] (4.30)

In other words, one update step for ¢ that minimizes Dk, (p:b(x)Hpg@(x)) w.r.t. ¢ can be
easily done by drawing samples from pib(x) and minimizing the energy-function w.r.t. ¢'.
Note that this approach is similar to the generator update in training Wasserstein GANs
[Arjovsky et al., 2017]. Due to the nature of adversarial training, the above KL objective
will encourage pg(x) to model dominants modes in pg 4(x), and it may cause py(x) to drop
modes.

A derivation of Equation 4.30 will be given, where we largely follow [Che et al., 2020].
Note that every time we update ¢, we are actually taking the gradient w.r.t ¢’, which can

be viewed as a copy of ¢ and is initialized as ¢. In particular, we should note that the ¢ in

121



hg.4(x) is fixed. Therefore, we have

Vo Dkt ) ,6(30) = T [ 1) Lo () o 0]
= / [V¢’p¢’ (X)] [logi%f (x) — logpa’d)(x)} dx

+ /p¢/(x) [V(ﬁ/ log pg(x) — Vi logpg’d)(x)] dx (4.31)

N

J/
-~

=0

— [ [Tam 0] [19g2 ) = tos 0] ax, (432)

where the second term in Equation 4.31 is 0 because the log pg 4(x) does not depend on ¢’

and the expectation of the score function is 0:

/p¢/ (x)V g log py (x)dx = EXN%’(X) [Vqs/ 10gp¢/(x>} = 0.

Recall that 6" has the same value as @ before the update, so

log pyr(x) — log hy, g(x) = log L@) + log Zy
i v pg(x)e o) “

= fp(x) + log Zg@. (4.33)

Plug Equation 4.33 into Equation 4.32, we have

VoDt g (), 6(x)) = [ Py () [Folo) + 1o 2, dx
X~p 41 (%) [fo(x)], (4.34)
since

/V¢/p¢/ (x) log Zp ydx = Vi log Zg g /pqy(x)dx = Vylog Zy 4 = 0.

122



Intuitively, the extension described in this section can be summarized as alternatively
updating the energy function and VAE’s decoder, where the decoder update corresponds
to decrease the energy value of its output. In Section 4.4, we will present empirical re-
sults of training with an additional loss term that updates the parameter ¢ to minimize

Dk, (pg(x)||pg,(x)) as explained above.

4.4 Experimental Results

In this section, we evaluate our proposed exponential tilting framework with extensive ex-
periments. We divide our experimental studies into three parts according to different types
of base generative models in the exponential tilting framework. Throughout the study, our
main focus is on the relative improvements of sampling from the EBMs over sampling from

base generative models.

4.4.1 Small VAEs as the Base Model

Toy Datasets

We first present the results of VAEBM when the base generative model is a simple VAE
with one layer of stochastic latent variables. To give a quick proof-of-concept, we apply
our method on toy datasets (25-Gaussians and Swiss Roll) following the setting of Tanaka
[2019]. The decoder and the energy function both have simple, fully connected structures as
described in Tanaka [2019].

We show qualitative results in Figure 4.5. We observe that although samples from VAEs
can basically cover the shape of the true distribution, many samples still appear in low-
density regions. In contrast, by sampling from VAEBM, we can accurately preserve all
modes in the target distribution while eliminating spurious modes in the 25-Gaussians case.

In the Swiss Roll case, it is also clear that the EBM better captures the underlying data

123



distribution

Trainingsamples VAE samples Latent EBM samples
o, ) v, wwy
g P00y K hakat ™ -
). 3 )
o “6‘ " /u
.-w“"‘-mu“' W-‘MM‘M
(a) Swiss Roll
Training samples VAE samples Latent EBM samples
- - ® - L4 :.. sty e e o cugwne oo - - - - L]
* . ,.‘ ']
» = o 3 o bolim o hm c.tg. 4, ® - - - .
L L L] - . .:-.. o AL R .q::, ‘ 1 - ¢ . o »
s . °
¢ = & e+ o p:-;.#, AT N | ¢ * o e
s - . - . s, .ojo- = oo ® ot s - - - .

(b) 25-Gaussians

Figure 4.5: VAEBMs trained on Swiss Roll and 25-Gaussians datset.

We also compute the test likelihood on 25-Gaussians. Note that VAEBM is an explicit
likelihood model with a parameterized density function. However, like other energy-based
models, the estimation of the exact likelihood is difficult due to the intractable partition
function log Z. One possible way to estimate the partition function is to use Annealed
Importance Sampling (AIS) [Neal, 2001]. However, using AIS to estimate log Z in high-
dimensional spaces is challenging. In fact, Du and Mordatch [2019] report that the estimation
does not converge in 2 days on CIFAR-10. Furthermore, AIS gives a stochastic lower bound
on log Z, and therefore the likelihood computed with this estimated log Z would be an upper
bound for the true likelihood. This makes the estimated likelihood hard to compare with
the VAE’s likelihood estimate, which is usually a lower bound on the true likelihood [Burda
et al., 2015].

In the 2-D domain, the partition function log Z can be accurately estimated by a numer-

124



MNIST Fashion CIFAR-10

VAE 18.9 57.1 139.6
VAEBM 16.0 38.1 108.4

Table 4.1: Comparing the FID scores of base VAEs and VAEBMs.

ical integration scheme. For the VAE, we use the IWAE bound [Burda et al., 2015] with
10,000 posterior samples to estimate its likelihood. We use 100,000 test samples from the
true distribution to evaluate the likelihood. Our VAEBM obtains the average log-likelihood
of -1.50 nats on test samples, which significantly improves the VAE, whose average test
likelihood is -2.97 nats. As a reference, we also analytically compute the log-likelihood of

test samples under the true distribution, and the result is -1.10 nats.

Image Datasets

We also evaluate the performance of VAEBM on image datasets, including MNIST, Fashion
MNIST and CIFAR-10. We show some qualitative results of VAEBMs on top of simple
convolutional VAEs in Figure 4.6. From Figure 4.6, we clearly observe that samples generated
by VAEBMs have higher quality than samples from base VAEs.

Quantitatively, we compared the FID score of the VAEs and VAEBMSs, and results are
shown in Table 4.1. We observe that sampling from VAEBMs significantly improves the

quality of generated samples over directly sampling from the base VAEs.

Experimental Settings:

For the simple VAE model, we use the DCGAN Radford et al. [2015] structure on the
decoders of our VAESs, and the encoders are designed to be symmetric to the decoder. We
use latent dimension 100 for all experiments. For MNIST and Fashion MNIST datasets, we
use binary cross-entropy as reconstruction loss, while for CIFAR-10, we use MSE loss. All

VAESs are trained for 256 epochs with batch size 128 and Adam optimizer with fixed learning
125



Figure 4.6: Qualitative results of VAEBMs with simple comvolutional VAE as the backbone
on MNIST, Fashion MNIST and CIFAR-10. Left: samples generated by VAEs. Right:
samples generated by VAEBMs.

126



rate 1 x 1073.

We use a simplified version of the network structure described in Du and Mordatch [2019]
to define our Ey. In particular, our method consists of 3 ResNet blocks with 64 hidden
channels and 3 resent blocks with 128 hidden channels, followed by Global Sum Pooling and
an FC layer. For Langevin dynamics, we use step size 0.01 and run the chain for 60 steps.
We find adding a small amount (with a coefficient 0.1) of energy regularization is helpful for
avoiding over-fitting early in training. After training, we find sampling latent variables with
a longer chain leads to better performances. We generate samples for testing by running the

chain for 100 steps.

4.4.2  Normalizing Flows as the Base Model

In this section, we study the exponential tilting with normalizing flows (in particular, GLOW
[Kingma and Dhariwal, 2018]) as the base generative model on image datasets. Note that we
do not use normalizing flows on toy datasets, because the vanilla flow is heavily constrained
by the manifold structure of the prior distribution, making it very hard to model distributions
like the 25-Gaussians.

We show qualitative results in Figure 4.7. We clearly observe that samples generated
by the EBMs have higher quality than samples from the base GLOW model. On MNIST
and Fashion MNIST, samples obtained through the latent EBM have smoother shapes than
samples from the GLOW. On CIFAR-10, the latent EBM effectively corrects the noisy back-
grounds of the samples generated by the GLOW. We illustrate the process of Langevin
dynamics sampling from the latent EBM in Figure 4.8, where we generate samples for every
ten iterations. Apparently, the Langevin dynamics is going towards latent variables that
produce more semantically meaningful and sharp samples.

Quantitatively, we compared the FID score of the GLOWs and GLOWs tilted with EBMs,

and results are shown in Table 4.2, where we observe significant improvements made by the

127



Figure 4.7: Qualitative results of exponential tilting with GLOW backbone on MNIST,
Fashion MNIST and CIFAR-10. Left: samples generated by from GLOWSs. Right: samples
generated by the EBMs.

128



Figure 4.8: MNIST Langevin dynamics visualization, initialized at samples from prior (the
leftmost column).

MNIST Fashion CIFAR-10

GLOW 29.4 58.7 76.2
GLOW + EBM 123 41.6 67.8

Table 4.2: Comparing the FID scores of base GLOWs and GLOWs tilted with EBMs.

exponential tilting.

Experimental Settings:

We train GLOW models following the settings provided in Nalisnick et al. [2018]. For MNIST
and Fashion MNIST,we use a GLOW architecture of 2 blocks of 16 affine coupling layers,
squeezing the spatial dimension in between the 2 blocks. For the coupling function, we
use a 3-layer Highway network with 64 hidden channels. For CIFAR-10, we use 3 blocks
of 32 affine coupling blocks, applying the multi-scale architecture between each block. The
coupling function is a 3-layer Highway network with 256 hidden channels. Note that we
modify the model size to fit in a single GPU for training. For MNIST and Fashion MNIST,

we train the GLOW for 128 epochs with batch size 64 and Adam optimizer with fixed

129



learning rate 5 x 10~%. For CIFAR-10, we train the GLOW for 256 epochs with batch size
64 and Adam optimizer with fixed learning rate 5 x 10™%.

For the EBM component, we adopt the same setting as in Sectionapter 4.4.1.

4.4.8 Large Hierarchical VAFEs as the Base Model

Our exponential tilting framework is constrained by the capacity of the base generative
model. In previous sections where simple VAEs with one-layer latent variables or normalizing
flows served as the base model, the resulting exponential tilting models cannot obtain sample
quality competitive to GANs because of the limitation of base models. For example, a
simple VAE even cannot reconstruct data well, which significantly restricts its ability to
generate new samples. In this section, we push the limit of exponential tilting by adopting
large hierarchical VAEs as the base model. In particular, we try to design VAEBM with
NVAE [Vahdat and Kautz, 2020] as the backbone. NVAE is currently the most powerful
VAE model. It increases the expressivity of both prior and approximate posterior using
hierarchical latent variables [Kingma et al., 2016] where z is decomposed into a set of disjoint
groups, z = {z1,21,...,2z1}, and the prior pg(z) = [[; pg(z;|z<;) and the approximate
posterior qy4(z|x) = [; ¢4(21|z<;,x) are defined using autoregressive distributions over the
groups. The conditioning is implemented with the combination of samples and deterministic
networks. See Figure 4.9 for an illustration on the implementation of conditioning. NVAE
obtains impressive results on likelihood modeling (and hence nearly perfect reconstruction),
however, the sample quality of NVAE is still limited. We hope that the exponential tilting
framework will significantly improve the sample quality of NVAE and achieve competitive
performance with GANs.

In this section, we evaluate our proposed VAEBM with NVAE backbone through com-
prehensive experiments. Specifically, we benchmark sample quality and provide detailed

ablation studies on training techniques. In addition, we study mode coverage of our model

130



bottom-up model
[epowr umop-doy pareys
[Ppowr umop-doy pareys

(a) Bidirectional Encoder (b) Generative Model

Figure 4.9: The neural networks implementing an encoder gy(z|x) and generative model
pg(x,z) for a 3-group hierarchical VAE. Figure taken from Vahdat and Kautz [2020]. Blocks
with 1’ denotes residual neural networks. Blocks with '+’ denotes feature combination (e.g.,
concatenation). Blocks with ’h ’ denotes trainable parameters.

131



and test for spurious modes. Note that in NVAE, the prior distribution is a group-wise
auto-regressive Gaussian, and the conditional pixel-wise distributions in x are also Gaus-
sian. Therefore, the reparameterization introduced in Section 4.3.3 corresponds to shift and

scale transformations.

Image Generation:

In Table 4.3, we quantitatively compare the sample quality of VAEBM with different gener-
ative models on (unconditional) CIFAR-10. We adopt Inception Score (IS) [Salimans et al.,
2016] and FID [Heusel et al., 2017] as quantitative metrics. We observe that our VAEBM
outperforms previous EBMs and other explicit likelihood-based models by a large margin.
Note that introducing persistent chains during training only leads to slight improvement,
while Du and Mordatch [2019] rely on persistent chains with a sample replay buffer. This is
likely due to the efficiency of sampling in latent space. Our model also produces significantly
better samples than NVAE, the VAE component of our VAEBM, implying a significant
impact of our proposed energy-based refinement. We also compare our model with state-
of-the-art GANs and recently proposed score-based models, and we obtain comparable or
better results. Thus, we largely close the gap to GANs and score-models, while maintaining
the desirable properties of models trained with maximum likelihood, such as fast sampling
and better mode coverage.

Qualitative samples generated by our model are shown in Figure 4.10 and intermediate
samples along MCMC chains in Figure 4.11. We find that VAEBM generates good samples
by running only a few MCMC steps. Initializing MCMC chains from the pre-trained VAE
also helps quick equilibration.

We also train VAEBM on larger images, including CelebA 64, CelebA HQ 256 [Karras
et al., 2017] and LSUN Church 64 [Yu et al., 2015]. We report the FID scores for CelebA
64 and CelebA HQ 256 in Tables 4.4 and 4.5. On CelebA 64, our model obtains results

132



Figure 4.10: CIFAR-10 samples generated by VAEBM with NVAE backbone.

133



Figure 4.11: Visualizing MCMC sampling chains. Samples are generated by running 16 LD
steps. Chains are initialized with pre-trained VAE. We show intermediate samples at every
2 steps.

134



Table 4.3: Comparing VAEBM and other generative models with IS and FID scores for
unconditional generation on CIFAR-10.

Model ISt FIDJ
Ours VAEBM w/o persistent chain 8.21 12.26
VAEBM w/ persistent chain 8.43 12.19
IGEBM [Du and Mordatch, 2019] 6.02 40.58
EBM with short-run MCMC [Nijkamp et al., 2019] 6.21 -
F-div EBM [Yu et al., 2020a)] 8.61 30.86
EBMs FlowCE [Gao et al., 2020] - 37.3
FlowEBM [Nijkamp et al., 2022] - 7812
GEBM [Arbel et al., 2020] - 23.02
Divergence Triangle [Han et al., 2020] - 30.1
Other Glow [Kingma and Dhariwal, 2018| 3.92 489
Likeli- PixelCNN [Oord et al., 2016] 4.60 65.93
hood NVAE [Vahdat and Kautz, 2020] 5.51 51.67
Models VAE with EBM prior [Pang et al., 2020] - 70.15
Score- NCSN [Song and Ermon, 2019] 8.87 25.32
based NCSN v2 [Song and Ermon, 2020] - 3175
Models Multi-scale DSM [Li et al., 2019a] 8.31 31.7
Denoising Diffusion [Ho et al., 2020] 946 3.17
SNGAN [Miyato et al., 2018] 822 217
GAN- SNGAN+DDLS [Che et al., 2020] 9.09 15.42
based SNGAN-+DCD [Song et al., 2020b] 9.11 16.24
Models BigGAN [Brock et al., 2018] 9.22 14.73
StyleGAN2 w/o ADA [Karras et al., 2020a] 899 9.9
Others PixellQN [Ostrovski et al., 2018] 5.29 49.46
MoLM [Ravuri et al., 2018] 7.90 189

comparable with the best GANs. Although our model obtains worse results than some
advanced GANs on CelebA HQ 256, we significantly reduce the gap between likelihood
based models and GANs on this dataset. On LSUN Church 64, we obtain FID 13.51, which
significantly improves the NVAE baseline FID 41.3.

We present qualitative samples of CelebA 64, CelebA HQ 256 and LSUN Church 64 in
Figure 4.12, 4.13 and 4.14 respectively. We observe that the generated images are realistic
and sharp. In Figure 4.15 and 4.16, we visualize the effect of sampling from VAEBM by
displaying sample pairs before and after running Lanegvin dynamics, where we clearly see

that the EBM significantly refines the base VAE.
135



i NG

ki K
_ g S

b ol
0N
- y =
byt . - . L'.
»
iy ..*. e S 21 .
F ; "
& w
- -
L] /8
- 1 ;
| -
| 48
s .= o
= b =
3 B iic)
- < - %
[ i M
¢ i
|‘ 'J_ " ™ 3
o
:a] -"__t._- \
. 1
¥ I
-
- | - I*-
f i |§j -

Figure 4.12: CelebA 64 samples generated by VAEBM with NVAE backbone.

136



Figure 4.13: CelebA HQ 256 samples generated by VAEBM with NVAE backbone.

137



Figure 4.14: LSUN church 64 samples generated by VAEBM with NVAE backbone.

138



Figure 4.15: Visualizing the effect of MCMC sampling on CelebA HQ 256 dataset. Samples
are generated by initializing MCMC with full temperature VAE samples. MCMC sampling
fixes the artifacts of VAE samples, especially on hairs.

139



Figure 4.16: Visualizing the effect of MCMC sampling on LSUN Church 64 dataset. For
each subfigure, the top row contains initial samples from the VAE, and the bottom row
contains corresponding samples after MCMC. We observe that MCMC sampling fixes the
corrupted initial samples and refines the details.

140



Table 4.4: Generative performance of VAEBM on CelebA 64

Model FIDJ
VAEBM (ours) 5.31
NVAE ([Vahdat and Kautz, 2020]) 14.74
Flow CE ([Gao et al., 2020]) 12.21
Divergence Triangle ([Han et al., 2020]) 24.7
NCSNv2 ([Song and Ermon, 2020]) 26.86
COCO-GAN ([Lin et al., 2019]) 1.0

QA-GAN ([Parimala and Channappayya, 2019]) 6.42

Table 4.5: Generative performance of VAEBM on CelebA HQ 256

Model FID]
VAEBM (ours) 20.38
NVAE ([Vahdat and Kautz, 2020]) 45.11

GLOW ([Kingma and Dhariwal, 2018]) 68.93

Advers. LAE ([Pidhorskyi et al., 2020]) 19.21
PGGAN ([Karras et al., 2017]) 8.03

Ablation Studies:

To better understand the VAEBM model, in Table 4.6, we compare VAEBM to several
closely related baselines. All the experiments here are performed on CIFAR-10, and for
simplicity, we use smaller models than those used in Table 4.3.

Data space vs. augmented space: One key difference between VAEBM and previous
work such as Du and Mordatch [2019] is that our model is defined on the augmented space
(x,z), while their EBM only involves x. Since we pre-train the VAE, one natural question is
whether our strong results are due to good initial samples x from the VAE, which are used
to launch the MCMC chains. To address this, we train an EBM purely on x as done in Du
and Mordatch [2019]. We also train another EBM only on x, but we initialize the MCMC
chains with samples from the pre-trained NVAE instead of noise. As shown in line 3 of Table
4.6, this initialization helps the EBM which is defined only on x. However, VAEBM in the
augmented space outperforms the EBMs on x only by a large margin.

Adversarial training vs. sampling: When training EBMs, gradient for the energy

141



Table 4.6: Generative performance of VAEBM on CelebA HQ 256

Model ISt FIDJ
NVAE (Vahdat and Kautz) 5.19  55.97
EBM on x (Du and Mordatch) 5.85 48.89
EBM on x, MCMC init w/ NVAE 7.28 29.32

WGAN w/ NVAE decoder 7.41  20.39
VAEBM + D1, (pg(%)[|pg,s(x)) 8.05 14.00
VAEBM (ours) 8.15 12.96

function is similar to the gradient updates of WGAN’s discriminator [Arjovsky et al., 2017].
The key difference is that we draw (approximate) samples from the model by MCMC, while
WGAN draws negative samples from a generator [Che et al., 2020]. WGAN updates the
generator by playing an adversarial game, while we only update the energy function fy. We
compare these two methods by training the energy function fy and a generator with the
WGAN objective and initializing the generator with the NVAE decoder. As shown in line
4 of Table 4.6, we significantly outperform the WGAN version of our model, implying the
advantage of our method over adversarial training.

Updating VAE generator while training EBM: As discussed in Sectionapter 4.3.4,
we can jointly train # and ¢, where ¢ is updated with additional loss terms that minimize
Dxr,(pg(x)||pg,(x)). We train VAEBMs with these additional loss and present the results
in line 5 in Table 4.6. We observe that updating ¢ with additional losses does not improve
the generative performances, and updating the decoder is unnecessary. This is likely because
the initial VAE is pulled as closely as possible to the data distribution already, which is also
the target for the joint VAEBM pg’qﬁ(x). Therefore, we adopt the simplest training method
where we only minimize Dgr,(pdata(X)||Pg,¢(x))-

In Figure 4.17, we show qualitative samples from models corresponding to each item in

Table 4.6.

142



(a) NVAE baseline (b) WGAN, initialized with NVAE decoder

(¢) EBM on x, MCMC initialized with NVAE

samples (d) VAEBM with Dy, (pg(x)||pe,s(x)) loss

(e) VAEBM

Figure 4.17: Qualitative results of ablation study

143



Table 4.7: Generative performance of VAEBM on CelebA HQ 256

Model ModesT KLJ|

VEEGAN ([Srivastava et al., 2017]) 761.8 2.173
PacGAN ([Lin et al., 2018]) 992.0 0.277
PresGAN ([Dieng et al., 2019)) 999.6 0.115
InclusiveGAN ([Yu et al., 2020b]) 997 0.200
StyleGAN2 ([Karras et al., 2020b]) 940 0.424
VAEBM (ours) 1000 0.087

Test for Spurious or Missing Modes

We evaluate mode coverage on StackedMNIST. This dataset contains images generated by
randomly choosing 3 MNIST images and stacking them along the RGB channels. Hence, the
data distribution has 1000 modes. After training a generative model on this dataset, we can
evaluate the mode coverage by classifying generated samples with a classifier on MNIST.

Following Lin et al. [2018], we report the number of covered modes and the KL divergence
from the categorical distribution over 1000 categories from generated samples to true data
(Table 4.7). VAEBM covers all modes and achieves the lowest KL divergence even compared
to GANs that are specifically designed for this task. Hence, our model covers the modes
more equally.

We also plot the histogram of likelihoods for CIFAR-10 train/test images in Figure 4.18.
We see that our model assigns similar likelihoods to both train and test set images. This
indicates that VAEBM generalizes well to unseen data and covers modes in the training data
well.

We evaluate spurious modes in our model by assessing its performance on out-of-distribution
(OOD) detection. Nalisnick et al. [2018], Xiao et al. [2020b] observe that some likelihood-
based generative models, including VAEs and normalizing flows, assign a higher likelihood
to OOD samples. One possible explanation is that likelihood-based models suffer from the
mismatch of density discussed in Sectionapter 4.1. Therefore, it is promising to improve

the OOD detection by exponential tilting. We use VAEBM trained on CIFAR-10, and es-

144



test

600 - train

500 -

400 A

300 A

200 A

100 A

0 T T T T T T
0 20000 40000 60000 80000 100000

Figure 4.18: Histogram of unnormalized log-likelihoods on 10k CIFAR-10 train and test set
images.

timate unnormalized log py 4(x) on in-distribution samples (from CIFAR-10 test set) and
OOD samples from several datasets. Following Nalisnick et al. [2018], we use the area under
the ROC curve (AUROC) as a quantitative metric, where high AUROC indicates that the
model correctly assigns low density to OOD samples. In Table 4.8, we see that VAEBM
has significantly higher AUROC than NVAE, justifying our argument that the energy func-
tion reduces the likelihood of non-data-like regions. VAEBM also performs better than
IGEBM and JEM, while worse than HDGE. However, we note that JEM and HDGE are
classifier-based models, known to be better for OOD detection [Liang et al., 2018]. The good
performance on OOD detection suggests that our VAEBM successfully refine the density of

VAE by excluding non-data-like regions.

Comparison of Sampling in (e, €,)-space and in (x, z)-space

In Section 4.3.3, we highlight the advantage of sampling in the reparametrization space
(ex, €z) over sampling in (X, z)-space, as it automatically adjust the per-element step size. To

further provide empirical evidence that adjusting the step size for each variable is necessary,

145



Table 4.8: Table for AUROC? of log p(x) computed on several OOD datasets. In-distribution
dataset is CIFAR-10. Interp. corresponds to linear interpolation between CIFAR-10 images.

SVHN Interp. CIFAR100 CelebA

NVAE [Vahdat and Kautz, 2020] 0.42 0.64 0.56 0.68
Un- Glow [Kingma and Dhariwal, 2018] 0.05 0.51 0.55 0.57
supervised IGEBM [Du and Mordatch, 2019] 0.63 0.7 0.5 0.7
Training Divergence Traingle [Han et al., 2020]  0.68 - - 0.56

VAEBM (ours) 0.83 0.7 0.62 0.77
Supervised JEM [Grathwohl et al., 2020] 0.67 0.65 0.67 0.75
Training HDGE [Liu and Abbeel, 2020] 0.96 0.82 0.91 0.8

we try sampling directly in (x, z)-space without adjusting the step size (i.e., use a universal
step size for all variables). Qualitative results are presented in Figure 4.19. We examine
several choices for the step size and we cannot obtain high-quality samples.

In conclusion, the re-parameterization provides an easy implementation to adjust step

size for each variable, and the adjustment is shown to be crucial to obtain good samples.

Implementation Details

In this section, we introduce the details of training and sampling from VAEBM. Codes for
the VAEBM implementation can be found at https://github.com/NVlabs/VAEBM.
NVAE: VAEBM uses NVAE as the py(x) component in the model. We train the NVAE

1 We largely follow the default settings, with one major

with its official implementation
difference that we use a Gaussian decoder instead of a discrete logistic mixture decoder as
in Vahdat and Kautz [2020]. The reason for this is that we can run Langevin dynamics only
with continuous variables. The number of latent variable groups for CIFAR-10, CelebA 64,
LSUN Church 64 and CelebA HQ 256 are 30, 15, 15 and 20, respectively.

Network for energy function: We largely adopt the energy network structure for

CIFAR-10 in Du and Mordatch [2019], and we increase the depth of the network for larger

images. There are 2 major differences between our energy networks and the ones used in

1. https://github.com/NVlabs/NVAE

146


https://github.com/NVlabs/VAEBM
https://github.com/NVlabs/NVAE

(a) Step size 8e-4 (b) Step size 8e-5

(c) Step size 8e-6

Figure 4.19: Qualitative samples obtained from sampling in (x, z)-space with different step
sizes.

Du and Mordatch [2019]: 1. we replace the LeakyReLU activations with Swish activations,
as we found it improves training stability, and 2. we do not use spectral normalization
[Miyato et al., 2018]; instead, we use weight normalization with data-dependent initialization
[Salimans and Kingma, 2016]. The network structure for each dataset is presented in Table
4.9.

Training of energy function: We train the energy function by minimizing the negative
log likelihood and an additional spectral regularization loss which penalizes the spectral norm
of each convolutional layer in fy. The spectral regularization loss is also used in training
NVAE, as we found it helpful to regularize the sharpness of the energy network and better
stabilize training. We use a coefficient 0.2 for the spectral regularization loss.

We summarize some key hyper-parameters we used to train VAEBM in Table 4.10. On
all datasets, we train VAEBM using the Adam optimizer [Kingma and Ba, 2015] and weight

decay 3e—5. We use constant learning rates, shown in Table 4.10. Following Du and Mor-

147



Table 4.9: Network structures for the energy function fy(x)

CIFAR-10

CelebA 64

LSUN Church 64

3 x 3 conv2d, 128
ResBlock down 128
ResBlock 128
ResBlock down 256
ResBlock 256
ResBlock down 256
ResBlock 256
Global Sum Pooling
FC layer — scalar

in Chapter 4.

3 x 3 conv2d, 64
ResBlock down 64
ResBlock 64
ResBlock down 128
ResBlock 128
ResBlock down 128
ResBlock 256
ResBlock down 256
ResBlock 256
Global Sum Pooling
FC layer — scalar

CelebA HQ 256

3 x 3 conv2d, 64
ResBlock down 64
ResBlock 64
ResBlock down 128
ResBlock 128
ResBlock 128
ResBlock down 128
ResBlock 256
ResBlock 256
ResBlock down 256
ResBlock 256
Global Sum Pooling
FC layer — scalar

3 x 3 conv2d, 64
ResBlock down 64
ResBlock 64
ResBlock down 128
ResBlock 128
ResBlock down 128
ResBlock 128
ResBlock down 256
ResBlock 256
ResBlock down 256
ResBlock 256
ResBlock down 512
ResBlock 512
Global Sum Pooling
FC layer — scalar

148

datch [2019], we clip training gradients that are more than 3 standard deviations from the
2nd-order Adam parameters. Note that with such a small number of Langevin sampling
steps, the discrete Langevin sampling can be better viewed as an implicit generator model

rather than an approximation to the Langevin dynamics. We will discuss this issue in detail

While persistent sampling using a sample replay buffer has little effect on CIFAR-10, we

found it to be useful on large images such as CelebA HQ 256. When we do not use persistent



Table 4.10: Important hyper-parameters for training VAEBM. LR stands for learning rate,
BS stands for batch size.

Dataset LR BS Persistent # steps Step Size
CIFAR-10 w/o persistent chain 4e—5 32 No 10 8e—5
CIFAR-10 w/ persistent chain ~ 4e—5 32 Yes 6 6e—5
CelebA 64 5e—5 32 No 10 5e—6
LSUN Church 64 4e—5 32 Yes 10 4e—6
CelebA HQ 256 4e—5 16 Yes 6 3e—6

sampling, we always initialize the LD chains with (ex, €z ), sampled from a standard Gaussian.
When we use persistent sampling in training, we keep a sample replay buffer that only stores
samples of €5, while ex is always initialized from a standard Gaussian. The size of the replay
buffer is 10,000 for CIFAR-10 and LSUN Church 64, and 8,000 for CelebA HQ 256. At
every training iteration, we initialize the MCMC chains on €, by drawing € from the replay
buffer with probability p and from standard Gaussian with probability 1 —p. For CIFAR-10
and LSUN Church 64, we linearly increase p from 0 to 0.6 in 5,000 training iterations, and
for CelebA HQ 256, we linearly increase p from 0 to 0.6 in 3,000 training iterations. The
settings of Langevin dynamics are presented in Table 4.10.

We do not explicitly set the number of training iterations. Instead, we follow Du and
Mordatch [2019] to train the energy network until we cannot generate realistic samples
anymore. This happens when the model overfits the training data and hence energies of
negative samples are much larger than energies of training data. Typically, training takes
around 25,000 iterations (or 16 epochs) on CIFAR-10, 20,000 iterations (or 3 epochs) on
CelebA 64, 20,000 iterations (or 5 epochs) on LSUN Church 64, and 9,000 iterations (or 5
epochs) on CelebA HQ 256.

Test time sampling: After training the model, we generate samples for evaluation by
running Langevin dynamics with (ex, €z) initialized from standard Gaussian, regardless of

whether persistent sampling is used in training or not. We run slightly longer LD chains than

149



training to obtain the best sample quality. In particular, our reported values are obtained
from running 16 steps of LD for CIFAR-10, 20 steps of LD for CelebA64 and LSUN Church

64, and 24 steps for CelebA HQ 256. The step sizes are the same as training step sizes.

Settings for Ablation Study

Here we present the details of ablation experiments. Throughout ablation experiments, we
use a smaller NVAE with 20 groups of latent variables trained on CIFAR-10. We use the
same network architectures for the energy network as in Table 4.9, with potentially different
normalization techniques discussed below. We spent significant efforts on improving each
method we compare against, and we report the settings that led to the best results.

WGAN initialized with NVAE decoder: We initialize the generator with the pre-
trained NVAE decoder, and the discriminator is initialized by a CIFAR-10 energy network
with random weights. We use spectral normalization and batch normalization in the dis-
criminator as we found them necessary for convergence. We update the discriminator using
the Adam optimizer with constant learning rate 5e—5, and update the generator using the
Adam optimizer with initial learning rate 5e—6 and cosine decay schedule. We train the
generator and discriminator for 40k iterations, and we reach convergence of sample quality
towards the end of training.

EBM on x, w/ or w/o initializing MCMC with NVAE samples: We train two
EBMs on data space similar to Du and Mordatch [2019], where for one of them, we use the
pre-trained NVAE to initialize the MCMC chains that draw samples during training. The
setting for training these two EBMs are the same except for the initialization of MCMC. We
use spectral normalization in the energy network and energy regularization in the training
objective as done in Du and Mordatch [2019] because we found these modifications to improve
performance. We train the energy function using the Adam optimizer with constant learning

rate le—4. We train for 100k iterations, and we reach convergence of sample quality towards

150



the end of training. During training, we draw samples from the model following the MCMC
settings in Du and Mordatch [2019]. In particular, we use persistent sampling and sample
from the sample replay buffer with probability 0.95. We run 60 steps of Langevin dynamics
to generate negative samples and we clip gradients to have individual value magnitudes of
less than 0.01. We use a step size of 10 for each step of Langevin dynamics. For test time
sampling, we generate samples by running 150 steps of LD with the same settings as during
training.

VAEBM with Dy, (pg(x)||pg,¢(x)) loss: We use the same network structure for £,
as in VAEBM. We find persistent sampling significantly hurts the performance in this case,
possibly due to the fact that the decoder is updated and hence the initial samples from the
decoder change throughout training. Therefore, we do not use persistent training. We train
the energy function using the Adam optimizer with constant learning rate 5e—5. We draw
negative samples by running 10 steps of LD with step size 8e—5. We update the decoder
with the gradient in Equation 4.34 using the Adam optimizer with initial learning rate 5e—6
and cosine decay schedule. For test time sampling, we run 15 steps of LD with step size

5e—0.

4.5 Conclusion

This chapter introduces the framework of exponential tilting, which trains an energy-based
refinement over base generative models. We show that with little computational overhead,
we can improve the sample quality of a variety of generative models, including normalizing
flows and VAEs, by sampling from exponential tilted models. We show that our model can be
trained effectively in two stages with a maximum likelihood objective, and we can efficiently
sample it by running short Langevin dynamics chains. Experimental results demonstrate
strong generative performance on several image datasets.

In this joint model, the EBM and the base model form a symbiotic relationship:

151



e The base model learns the overall mode structure, hence saves a lot of time for training

the EBM

e The base model provides re-parametrization for MCMC sampling from EBM, so that
the MCMC is performed on a distribution with smooth density, which significantly

facilitate both training and test-time sampling from the EBM.

e The EBM helps the base model to exclude non-data-like regions and significantly im-

proves the sample quality.

152



CHAPTER 5
SHORT-RUN LANGEVIN DYNAMICS AS GENERATOR
MODELS

In this chapter, we investigate the role of Langevin dynamics in the maximum likelihood
training of Energy-based models. We try to understand this training procedure by replacing
Langevin dynamics with deterministic solutions of the associated gradient descent ODE.
Doing so allows us to study the density induced by the dynamics (if the dynamics are
invertible), and connect with GANs by treating the dynamics as generator models, the
initial values as latent variables, and the loss as optimizing a critic defined by the very same
energy that determines the generator through its gradient. We begin with motivating our
approach and introducing relative backgrounds. Then we will introduce our modifications
to the maximum likelihood training of EBMs and present experimental results.

The material of this chapter is based on Xiao et al. [2021b].

5.1 Motivation and Introduction

As introduced in Section 2.3, Energy-based models (EBMs) are likelihood-based generative
models that model the unnormalized data density by assigning low energy to high-probability
regions in the data space. Recently, by using a neural network as the energy functions,
deep EBMs [Xie et al., 2016, Du and Mordatch, 2019] are able to model complex data.
There are a variety of ways to train EBMs, including minimizing the KIL-divergence [Du and
Mordatch, 2019] or general F-divergence [Yu et al., 2020a], score matching [Li et al., 2019b]
and contrastive estimation [Gao et al., 2020, Gutmann and Hyvérinen, 2012]. Among them,
the KL divergence minimization (equivalent to maximum likelihood estimation) is the most
widely used.

The maximum likelihood training of EBMs is introduced in Section 2.3.2. For con-

153



venience, we briefly re-state the core idea here. To train an EBM of the form py(x) =
exp (—Ey(x)) /Zy, where Ey(x) is the energy function with parameters § and Zy is the
normalizing constant, we can take the derivative of the negative log likelihood function

L(9) = EXNPdata(X) [—log pg(x)] w.r.t to the model parameter § [Woodford, 2006]:

IL(0) = Expyuia(x) [00Eg (X)] = Exoppy(x) [0 Ep (x)] (5.1)

and minimize L(f) by gradient descent. The second expectation in Equation 5.1 can be
empirically estimated by samples drawn from the model py(x) itself. However, sampling
from pp(x) is intractable and samples are usually drawn using MCMC. A commonly used
MCMC algorithm is the Langevin dynamics (LD) [Neal, 1993]. Given an initial sample x,

Langevin dynamics solves the SDE
1
dxy = —§VXE9(Xt)dt + dwy, (5.2)

where wy is Brownian motion. The discretized version, using the simplest Euler approxi-

mation yields:

Xtyl =Xt — gVXEQ(Xt) + \/ﬁwt, (5.3)

where wy ~ N (0,I) and 7 is the step-size. Theoretically, we need to run the discretized LD
with infinitely many steps and diminishing step sizes to obtain true samples. However, in
practice, we usually run LD for finite number of steps with a fixed step size. After training,
samples are obtained by running the same Langevin dynamics, typically with the same

number of steps.

154



Figure 5.1: Transition with K1 = 100 LD steps for training and varying K9 LD steps for
sampling. Figure taken from Nijkamp et al. [2019].

5.1.1 Alternative understanding of mazimum likelihood training

Although the maximum likelihood training scheme is simple and intuitively appealing, we
might still not fully understand its mechanism. Since the convergence of MCMC is extremely
difficult when the energy function is complicated, we cannot easily overlook the gap between
running the LD in practice (usually called short-run LD) and truly obtaining samples from
pp(x). Indeed, some interesting observations are made from training the EBMs through
maximum likelihood. Firstly, in practice, the noise scale of LD is usually much smaller than
the correct one in Equation 5.3, which makes the LD similar to gradient descent [Du and
Mordatch, 2019]. Secondly, unless the shape of the energy function is carefully modified
by introducing a base distribution as done in Xiao et al. [2020a], Nijkamp et al. [2022], LD
usually does not mix, i.e., samples obtained by running longer LD get trapped in different
local modes instead of traversing between modes. An example taken from Nijkamp et al.
[2019] is shown in Figure 5.1, where we observe that increasing the number of LD sampling
steps results in over-saturated samples.

Probably as a consequence, the initial points Xy contain information about the final
outcome. Therefore short-run LD is observed to be capable of reconstructing the data and
interpolating different samples. For example, Nijkamp et al. [2019] observe that by fixing
two noise vectors z1,x9 ~ N (0, ), and initialize the LD with interpolations between z, xo:
Zp = pz1 + m ,p € [0, 1], the resulting samples consist of a meaningful interpolation
between the samples generated by initializing LD with z; and z9 (see Figure 5.2). Also,

in Nijkamp et al. [2019], the authors observe that any given image can be reconstructed by

155



Figure 5.2: Transition of sequence of samples obtained from initializing the LD with inter-
polated noise z,. The leftmost and rightmost images are samples from initializing with z;
and z9, respectively. Figure taken from Nijkamp et al. [2019].

optimizing the initial value zgy by back-propagating into the LD iterations.

Another interesting observation is that, sometimes, while we can obtain good samples by
running short-run LD, the density of the EBMs can be drastically different from the true data
densities (e.g., Figure 2 of Gao et al. [2021]). These observations suggest that running short-
run LD may be fundamentally different from obtaining samples from the EBMs. Therefore
the maximum likelihood explanation for the training procedure may be invalid.

Nijkamp et al. [2019] first study the intriguing properties of short-run LD. They conjecture
that the short-run LD behaves more like a generator or flow model. They consider pg(x) to

be a generative model of the following form:

z~po(z); x= Mz u), (5.4)

where u denotes all the randomness in the short-run MCMC. For the K-step Langevin dy-
namics, My can be considered a K-layer noise-injected residual network, z can be considered
latent variables, and pg the prior distribution of z. Due to the non-convergence and non-
mixing of LD, x can be highly dependent on z, and z can be inferred from x. This is
completely different from the convergent MCMC, where x is independent of z. However,
they do not study py with an explicit formulation. In this chapter, we follow their work
to provide an alternative understanding of the maximum likelihood training of EBMs. In

particular, we replace the LD sampling with noise-free dynamics so that the output samples

156



are produced by a deterministic transformation of the initial points. In this case, we regard
the dynamic as a generator model and the initial points as latent variables. By ensuring that
the generator is invertible, we can explicitly study the density of the distribution induced by
the sampling dynamics (where the initial points entirely determine the randomness). In ad-
dition, by treating the sampling dynamics as a generator model, we find that we can improve

the sample quality by adding the generator loss term from GANSs to the original loss.

5.2 Related Work

The material of this chapter is closely related to earlier studies on the properties of ML
training EBMs with short-run non-convergent MCMC [Nijkamp et al., 2019, 2020], where
they illustrate through experiments that the short-run LD behaves more like a generator
model, and in particular Nijkamp et al. [2019] provide a moment matching framework for
explaining the mechanism behind the maximum likelihood training. In addition, Xie et al.
[2018, 2020] propose MCMC teaching, where a separate generator is trained to absorb the
process of LD sampling. This suggests that their method is based on the assumption that
LD used in practice can be represented as a generator model. Additionally, Han et al. [2019]
provides a probabilistic way to deal with EBM without MCMC. We take a further step from
them to explicitly study the properties of the generator models.

Since our noise-free sampling dynamics can yield an invertible gradient flow , our work is
related to the concept of generative gradient flows [Zhang et al., 2018, Huang et al., 2021a).
In addition, Song et al. [2021b] show that the stochastic dynamics of score based generative
models [Song and Ermon, 2019, Ho et al., 2020] are equivalent to specific deterministic ODE
flows [Chen et al., 2018a, Grathwohl et al., 2018]. However, such equivalence cannot be easily
established for Langevin diffusion. Pang et al. [2020] connects EBM and generator model,
but what they do is learning an EBM prior for the generator.

Finally, our work is related to previous work that connects GANs with EBMs [Che et al.,

157



2020, Song et al., 2020b, Ansari et al., 2021] or invertible flows [Grover et al., 2018]. In
particular, Grover et al. [2018] use invertible structures, such as real-NVP [Dinh et al.,
2016], for the generator of GANs, but they focus on hybrid training with adversarial and

maximum likelihood objectives.

5.3 Noise-free Sampling Dynamics as Flow Models

In this section, we demonstrate how to explicitly obtain the density induced by the noise-free
sampling dynamics by enforcing invertibility. We start by replacing the Langevin dynamics

in Equation 5.1 with the noise-free gradient descent ODE:
X'(t) = —VxEp(x(t)), x(0) =xo, t€][0,T], (5.5)

which is guaranteed to produce an invertible map under very mild conditions on F, and we

can write the continuous flow [Chen et al., 2018a, Grathwohl et al., 2018]:
x7 = G} (xg) = ODESolve(—Vx Eg(x(t)), %0, [0, T)), (5.6)

where ODESolve(—VxEy(x(t)),xq,[0,T]) is a black-box numerical ODE solver that solves
tne ODE with function —VxFy(x(t)) and initial value xq, from time 0 to 7.

Since there is no noise term, given Xg, the process can be represented by a deterministic
generator model with latent variable xg. We denote the model as Gg(xo). We want to
emphasize that T is an important component of the generator model, and we should use
roughly the same T when sampling. Moreover, as Gg(xo) is invertible, the likelihood along

the path can be obtained by instantaneous change of variables formula [Chen et al., 2018a),

158



and the log likelihood of data x under the flow model can be computed by
T
log p(x) = log p(xq) + /0 tr [Vxx Fg(x(t))] dt. (5.7)
As a special case, the forward Euler solver for this equation yields
Xt 1 :xt—gVXEg(xt), t=0,1,--- K —1, (5.8)

with initialization xqg from some fixed simple distribution pg in R such as the standard

Gaussian. In particular, Gg(xo) :RY — R? is a residual flow [Behrmann et al., 2019]:
xic = Gf (x0) = (I = 3VxEp)" (x0). (5.9)

GHT(XO) is guaranteed to be invertible if Lip (3VxEy)) < 1 [Behrmann et al., 2019]. This
holds as long as Vx Fjy has bounded Lipschitz constant and the step size 7 is sufficiently small.
However, it is still difficult to choose the step size that ensures invertibility, and therefore, we
generalize Gy(xg) to be any numerical solution to the initial value ODE problem in Equation
5.5.

To summarize, we train the energy network Ey by doing the gradient update in Equation
5.1 with negative samples obtained from Equation 5.6. After training, we can obtain new
samples by running Equation 5.6, and compute the likelihood of data point x by solving the
ODE in the reverse direction to find the corresponding initial point xqg and then apply 5.7.

The method discussed in this section is not computationally efficient. Note that for a

general neural ODE, the output y can be written as
y = ODESolve( fy(x(%)),x, [0, 7)), (5.10)

where f is a neural network. The goal is to optimize fy, and only the first-order derivative

159



is needed to optimize . However, in our case, fy = —VxEy, and hence we need to take
higher order derivative to optimize 6. This can be prohibitively slow in high dimensions. As
a result, we only strictly stick to the gradient flow formulation on 2-D toy data. On image

data, we simply remove the noise term in discretized Langevin dynamics in Equation 5.3.

5.4 Connection with W-GAN and the generator loss term

It is well known that the maximum likelihood training of EBMs is closely related to the
training of Wasserstein-GANs [Che et al., 2020], where the objective for the discriminator

D (assuming D is 1-Lipschitz) is
meax Ex~pgata [P(X)] = Ex~pg [D(x)], (5.11)

where p is the (implicit) distribution defined by the generator. The gradient of Equation
5.11 is (up to a sign) very similar to Equation 5.1 except that here the negative samples are
drawn from the generator, while in Equation 5.1, the negative samples are drawn from the
EBM itself. Note that the sign does not matter as we can model the negative energy instead.
Intuitively, W-GANs use the discriminator D to contrast true data and samples generated
by the generator GG, while EBMs use the energy function E to contrast true data and samples
generated by E itself implicitly through MCMC. Therefore, the maximum likelihood training
of EBMs can be described as a self-adversarial game.

In W-GANS, after the discriminator is updated by optimizing 5.11, the generator G is

then updated by

ID(X)] . (5.12)

mgx IE;CNP o

In other words, the generator is trained by maximizing the discriminator’s output of fake

samples generated by G. Strictly speaking, there is no corresponding loss term in the training

160



of EBMs, as the sampling is done by MCMC rather than deterministic mapping. However, as
discussed in Section 5.3, in practice, the sampling process can be seen as a generator model
with initial points as latent variables. In this case, we actually have an explicit generator Gy
defined in Equation 5.6, and therefore we can update the parameter of Gy by the following

objective:
min B g)(Go(x0)), (5.13)

where x is the latent variables sampled from pg, and sg(-) is the stop gradient operation.
Here we stop the gradient of Ey because we only want to differentiate through the generation
process. Note that the implicit generator is defined by an iterative process, and it is not
trivial to take the gradient of such a process. To do so, we unroll the iterative process by
storing the derivative of each step and propagating back from the last step to the first step.
Hence, we propose to add the extra update step for Gy at each iteration so that we
are essentially training a W-GAN whose discriminator and generator share the same set of
parameters and conjecture that the adversarial training will improve the sample quality.
One modification is made for the implementation. Typically when training GANs, we
alternate the update of the parameters of the discriminator and the generator, and hence
two batches of samples are generated. This can be slow in our case, as drawing samples
requires iterative updates. Therefore, we use the same batch of samples to update Ey and
Gy, and since we only have one set of parameters 6, it is equivalent to optimizing the following

objective without alternating optimization as in GANs:

min Ep(x) — Ep(Gyg(9)(%0)) + Esg(9)(Go(x0)), X~ pp, X0 ~ po- (5.14)

161



5.5 Experimental Results

In this section, we conduct experiments to verify our proposed methods and arguments in
section 5.3 and 5.4. Specifically, we train energy functions on 2d-toy data and image data by
replacing the MCMC sampling with deterministic dynamics. Throughout the experiments,
we initialize the dynamics with noise sampled from standard Gaussian distribution. We do
not use persistent sampling, as we want to interpret the model as a generator with fixed
prior. The deterministic dynamics can be simply defined by Equation 5.8, or more generally,
the path to solve the ODE as in Equation 5.6. In particular, we need to use the latter

method if we want to compute the density induced by the dynamics.

5.5.1 2D toy data

We use the Swiss roll and 9 Gaussian mixture grid as the true distributions, and our energy
function Ejy : R2 — R is a simple neural network with several fully connected layers. We
use the neural ODE formulation and solve the ODE in Equation 5.5 with the default Dor-
mand-Prince solver as in Chen et al. [2018a]. In Figure 5.3, we plot the samples obtained
from solving the ODE using Equation 5.6. As a comparison, we also plot the log density of
the ODE flow and the value of the negative energy function (which is the unnormalized log
density of the corresponding EBM) in the same figure. We observe that we can obtain good
samples, even though the densities of the EBMs are not close to the ground truth densities.
In contrast, the density functions induced by the ODE flow capture the densities the true
data distributions very well. We also train EBMs with valid MCMC sampling with noise
term and plot the density functions and generated samples in Figure 5.4. There we make a
similar observation that the densities of EBMs do not match the data distribution.

We also plot the normalized density of the EBMs and gradient flows in Figure 5.5, where
we observe that the spurious high-density region shown in the log density plot in Figure 5.3

disappears, and we still find that the density of the gradient flows captures the true density
162



(a) Swiss roll

(b) Gaussian grid

Figure 5.3: For each toy dataset, column 1: samples from the true data distribution;
column 2: samples from the ODE flow; column 3: (unnormalized) log density of the
EBM by plotting the value of —FEjy(x); column 4: log density of the ODE flow computed
by Equation 5.7. The spurious connections between components will visually disappear if
we take exponential (see Figure 5.5). We plot log density because the sampling dynamics
directly use it.

(a) Swiss roll

(b) Gaussian grid

Figure 5.4: Results of EBMs trained and sampled from using noisy dynamics on toy data.
For each sub-figure, we plot the left: samples obtained from running Langevin dynamics,
middle: (unnormalized) log density of the EBM ;| and right: normalized density of the
EBM, where the normalization constant is estimated by numerical integration.

163



(a) Swiss roll

(b) Gaussian grid

Figure 5.5: For each sub-figure, left: normalized density of the EBM, and right: density
of the gradient flow.

much better than that of the EBMs.

These observations prove that maximum likelihood training of EBMs is actually training
a gradient flow model. Since the density defined by the final energy function completely
fails to capture the true data density, arguments that running the sampling dynamics draws
samples from the EBM is certainly incorrect; instead, we show that the dynamic itself is the
generative model to sample from, as its density matches the shape of the true density.

In addition, we also train the ODE flows with the same formulation and structure using
the maximum likelihood objective (where the likelihood is defined in Equation 5.7 and com-
pare the obtained data likelihood with that of the flows trained by the EBM objective. For
the ODE flows trained by maximum likelihood, the test data log-likelihood (averaged over
10000 test samples) is -0.69 nats on Swiss roll and -1.47 nats on Gaussian grid. The test
data likelihood of the ODE flows trained by the EBM objective is -0.86 nats and -1.95 nats

on these two datasets, respectively. As expected, the flows directly trained by maximizing

164



Table 5.1: FID scores on image datasets for different models

MNIST Fashion-MNIST CIFAR-10 CelebA

EBM w/ noisy dynamic 15.4 61.7 70.4 69.6
EBM w/ noise-free dynamic ~ 11.7 50.1 61.6 56.6
+ Generator loss 7.7 40.6 47.9 34.8

data likelihood have higher test likelihood, but the flows trained by the EBM objective still

perform reasonably well.

5.5.2  Image Data

Experiments on toy data reveal that the maximum likelihood training of EBMs may actually
lead to training generator or flow models. If this is true, then the noise term used in
Langevin dynamics may be unnecessary or even harmful. We confirm this by studying the
sample quality on common image datasets, including MNIST, Fashion-MNIST, CIFAR-10,
and CelebA. For simplicity, our energy functions are simple convolutional nets instead of
more complex residual networks used in Du and Mordatch [2019], Xiao et al. [2021a], and
therefore we only compare relative performances.

We train energy functions using the gradient update in Equation 5.1, where the samples
are generated by either noisy or noise-free sampling dynamics. For noise-free dynamics, we
use the gradient descent formulation in Equation 5.8 instead of the neural ODE formulation
because we only want to study the effect of noise while keeping all other factors the same.
For noisy sampling dynamics, we reduce the noise scale as done in almost all other work,
otherwise, the training diverges quickly. We report the FID scores in Table 5.1. In Figure
5.6, 5.7 and 5.8, we present qualitative samples of EBMs with noisy sampling dynamics,
EBMs with noise-free dynamics, and EBMs with noise-free dynamics + generator update,
respectively. We observe that EBMs trained with noise-free dynamics indeed obtain better
sample quality on all datasets.

Besides, we plot the loss curve along with the training of models with noisy or noise-

165



Figure 5.6: Samples from EBMs w/ noisy dynamics

166



Figure 5.7: Samples from EBMs w/ noise-free dynamics

167



Figure 5.8: Samples from EBMs w/ noise-free dynamics plus extra generator loss

168



free dynamics on CIFAR-10 in Figure 5.9. We observe that for both models, the losses
oscillate around zero, as observed in Nijkamp et al. [2020]. However, the model trained with
noisy dynamics diverges after 20000 iterations, while the training of model with noise-free
dynamics is much more stable. In addition, we observe that adding the extra generator loss,
as discussed in Section 5.4 does not affect the training stability. In contrast, training EBMs
with noisy sampling dynamics may still diverge during training. These results suggest that
the noise term in sampling dynamics may have negative effects, which further supports the
argument that we should treat the model as a generator defined by the gradient of the energy
instead of an EBM.

Treating the noise-free dynamics as generator models, we further apply the additional
adversarial loss term for the W-GAN generator update. In particular, we train the model
with loss in Equation 5.14. We report the FID in the last line of Table 5.1, where we find
the generator update significantly improves the sample quality. This experiment shows that

the noise-free dynamics is indeed a generator, and we can use it to train GANs.

5.5.3  Ezxperimental settings

In this section, we introduce detailed settings of our experiments.

2D toy data

On 2D toy data, we use a 5-layer fully connected networks with 256 hidden units and swish
activation function. We train our models with Adam optimizer, with constant learning rate
le — 3. The models are trained for 3000 iterations with batch size 800.

We draw negative samples by solving the ODE in 5.6. To do so, we use the solver
implemented by Chen et al. [2018a]. We set the initial value to random samples from 2-d
standard Gaussian distribution. We use the default dopri5 solver, 7' € [0, 0.2], and numerical

error tolerance tolerance le—>5. After training, samples are drawn by solving the same neural

169



Loss curve (first 20000 iters)

le16 Loss curve 500 ]

loss
~
S
5

—100 1
-54 . ; . ; o 2500 5000 7500 10000 12500 15000 17500 20000
o 5000 10000 15000 20000 iterations

(b) EBMs w/ noisy dynamics, first 20000 itera-
tions

(a) EBMs w/ noisy dynamics

Loss curve

Loss curve

—2000 1

% —4000
£

loss
&
8
s

—6000 4

—8000 1

o 10000 20000 30000 40000
o 10000 20000 30000 40000 iterations
iterations

(d) EBMs w/ noise-free dynamics + generator

(c) EBMs w/ noise-free dynamics loss

Figure 5.9: Plots of loss curves on CIFAR-10 dataset. (a): When sampling using the
noisy MCMC, the training diverges after 20000 iterations. (b): For better visualization,
we plot the loss curve for the first 20000 iterations. (c): When using noise-free dynamics,
the training is more stable. (d): With the additional generator loss, although we see some
jumps on the loss curve, the training is overall stable.

170



MNIST CIFAR-10 CelebA

3 x 3 Convyy Stride 1 3 x 3 Convyy Stride 1 3 x 3 Convys Stride 1
4 x 4 Convygy e Stride 2 4 x 4 Convyy e Stride 2 4 x 4 Convyy e Stride 2
4 x 4 Convygy e Stride 2 4 x 4 Convyy s Stride 2 4 x 4 Convyyps Stride 2
4 x 4 Convgy pyf Stride 2 4 x 4 Convgypyf Stride 2 4 x 4 Convgy pf Stride 2
Faltten, FC layer to scalar Faltten, FC layer to scalar 4 x 4 Convygyyf Stride 2
Faltten, FC layer to scalar

Table 5.2: Network structures for different datasets. nf means number of filters. For MNIST,
Fashion MNIST and CelebA, nf = 32; for CIFAR-10, nf = 64. Swish activation is applied
after each convolutional layer.

ODE.

Image data

We resize MNIST and Fashion-MNIST to 32 x 32. The network structures are presented in
Table 5.2. We train all models with Adam optimizer with learning rate 5e — 4 and batch
size 64. As we mention in the main text, the training of EBMs with noisy dynamics is
unstable and it will diverge after certain number of iterations. This is also observed in Du
and Mordatch [2019] and Xiao et al. [2021a]. Therefore, we follow their setting to train the
EBMs until divergence. For EBMs trained with noise-free dynamics, we found the training
to be more stable. We set the number of training iterations similar to that of EBMs with
noisy dynamics. In particular, we train 8000 iterations for MNIST and Fashion-MNIST,
40000 iterations for CIFAR-10, and 30000 iterations for CelebA. To draw negative samples,
we set the step size to be 0.1 and the number of steps to be 40 for MNIST /Fashion-MNIST
and 60 for CIFAR-10 and CelebA. For the noisy sampling dynamics, we set the noise scale
to be 0.1.

For the extra GAN loss, we need to store the gradient while running the gradient descent
steps in Equation 5.8. This can be done by setting the create graph option when computing

the gradient in PyTorch’s auto differential package [Paszke et al., 2019].

171



5.6 Conclusion

In this chapter, we provide new insights to understand the maximum likelihood training
of EBMs. We believe that instead of training EBMs, the maximum likelihood objective
actually trains generator models through a self-adversarial mechanism. The generator model
is defined implicitly by the gradient of the energy network, and we study the property of
the generator model by removing the noise in the MCMC sampling dynamics. We conduct

experiments to justify our thoughts and make the following observations:

e On toy data, the density function induced by the invertible noise-free dynamics is
close to the shape of the true data density, while the density of the EBM with the

corresponding energy function fails to capture the true density.

e On image datasets, we observe that removing the noise in the LD improves sample

quality and training stability.

e The sample quality can be further improved by introducing the generator update dis-

cussed in section 5.4, i.e., making the self-adversarial game into an adversarial game.

These observations together suggest that the mechanism behind the ML training of EBMs is
to train a generator or gradient flow model, and we can benefit from removing the noise in the
sampling dynamics. As a result, given the difficulty of running MCMC in high dimensions,
we should study the convergence of MCMC sampling in high dimensions more carefully and
probably focus more on training techniques without sampling, if our goal is to train valid

energy-based models.

172



CHAPTER 6
DENOISING DIFFUSION GANS FOR ACCELERATING
SAMPLING FROM DENOISING DIFFUSION MODELS

This chapter proposes a model that accelerates the sampling from denoising diffusion models.
Specifically, we propose denoising diffusion GAN (DDGAN), which uses conditional GANs
to model the denoising distribution in the reverse process of denoising diffusion models. We
will begin with motivating our approach and introducing related work. Then we will give a
detailed description of our method and present experimental results.

The material of this chapter is based on Xiao et al. [2022].

6.1 Motivation and Introduction

As introduced in Section 2.4, denoising diffusion models [Sohl-Dickstein et al., 2015, Ho et al.,
2020] are powerful generative models with many successful applications. Diffusion models
define a forward diffusion process that maps data to noise by gradually perturbing the
input data. Data generation is achieved using a parameterized reverse process that performs
iterative denoising, starting from random noise. They can also be viewed as VAEs with fixed
dimensions at all layers [Ho et al., 2020]. Diffusion models demonstrate surprisingly good
results in sample quality, beating GANs in image generation [Dhariwal and Nichol, 2021, Ho
et al., 2021]. They also demonstrate good mode coverage, indicated by high test likelihood
[Song et al., 2021a, Kingma et al., 2021, Huang et al., 2021b]. However, one major drawback
of denoising diffusion models is that sampling from them is very slow due to the iterative
sampling process. Typically it takes more than 1000 function evaluations to sample from
denoising diffusion models, making them difficult to be used in applications that require
real-time generation.

Moreover, as discussed in Section 2.6, every deep generative model has its own limitations.

173



Importantly, we note that there is not a single generative model that can simultaneously excel

at the following three criteria:
e Sample quality
e Sample diversity or mode coverage
e Sampling speed

We describe the trade-off between different types of models with the term generative learning
trilemma, as shown in Figure 6.1. For example, GANs are fast to sample from and have high
sample quality, but they are known to suffer from mode collapse. VAEs and normalizing
flows are easy to sample from and tend to cover all the modes, but they cannot generate
high-quality samples. Denoising diffusion models are excellent in both sample quality and

diversity, but they are extremely slow to sample from.

High
Quality
Samples

Generative ,
Adversarial S \
Networks /.~

in Df.:nois-ing
: -+ Diffusion
[/ \ Models

Fast

Sampling /

Likelihood-based Models
(VAEs, Normalizing Flows)

Figure 6.1: Generative learning trilemma.

174



We want to design a generative model that has a good balance between these three
criteria. Previously, there have been many attempts to improve VAEs and normalizing flows
[Vahdat and Kautz, 2020, Child, 2021, Kingma and Dhariwal, 2018], but it is observed that
even the best VAEs and flows with huge model sizes still cannot generate samples with
quality competitive with GANs. Resolving the mode collapse of GANs is also tricky, as this
is a fundamental issue of adversarial training. Previous approaches [Srivastava et al., 2017,
Dieng et al., 2019] only partially alleviate the issue, and possibly at the cost of reduced sample
quality. As a result, we found the direction of accelerating the sampling from denoising
diffusion models to be new and promising for tackling the generative learning trilemma.

Some recent papers propose methods that accelerate the sampling from denoising diffu-
sion models, and they will be discussed in 6.2. They still largely follow the same formulations
of denoising diffusion models and can reduce the sampling iterations to around 100 steps.
Further reducing the number of sampling iterations will result in significant degradation of
sample quality. However, a 100-step sampling scheme still takes a lot of time and is imprac-
tical for real-time applications. Our goal is to significantly speed-up sampling from denoising
diffusion models. In other words, we want to generate high-quality samples in a few steps.

We carefully investigate the slow sampling issue of denoising diffusion models, and we
note that diffusion models commonly assume that the denoising distribution can be approx-
imated by Gaussian distributions. As discussed in Section 2.4.1, the denoising distribution

is parameterized by

Py (xp—1]x¢) = N (x¢—1; g (x¢, 1) , Bg (x4, 1)) , (6.1)

and the training goal is to let py (x;_1|x¢) match the true denoising distribution q(x;_1|x¢).
While the true denoising distribution is unknown (otherwise, we can directly use it to denoise
samples), it is known that for continuous diffusion (in the limit of small step size), the

reversal of the diffusion process has the identical functional form as the forward process

175



[Feller, 1949]. Since in the forward process, q(x¢|x;—1) is a Gaussian distribution, if the step
size is infinitesimally small, the true denoising distribution ¢(x;_1|x¢) is also a Gaussian. In
this case, we can parameterize the denoising distribution with a Gaussian as in Equation
6.1. As a result, previous denoising diffusion models use a very small step size (hence a very
large number of steps) to ensure that the true denoising distribution is close to a Gaussian.

If we want to significantly reduce the number of sampling steps, we need to know what
the true denoising distribution looks like when the denoising step size is large. Intuitively,
given a noisy observation x;, if we want to denoise for a small step and obtain x;_1, the
distribution ¢(x;_1|x¢) has a single mode as the condition x; contains most of the information
about x;_1. However, if we denoise x; for a large step, there might be multiple plausible
x;—1 and hence g(x;_1|x¢) will be a multi-modal distribution which cannot be approximated

by a Gaussian. The difference between small and large step sizes is illustrated in Figure 6.2.

Figure 6.2: Comparison between large and small denoising step sizes. Top: when the step
size is small, the true denoising distribution is single modal and can be approximated with
a Gaussian. Bottom: when the step size is large, the true denoising distribution is multi-
modal and cannot be approximated by a Gaussian.

We present a concrete example of 1-d toy data in Figure 6.3, where we plot the true

denoising distribution with different step sizes. Note that although in general we cannot

176



compute the true denoising distribution in closed form, in 1-d we can compute

a(xe_1]xt) = / 0110, %0)q(x0)dxo
X0

with numerical integration, where g(x;_1|x¢,X() is the Gaussian posterior in Equation 2.50.
We observe that the true denoising distribution becomes more complex and multimodal as

the step size increases.

Figure 6.3: Top: The evolution of 1D data distribution ¢(xg) through the diffusion process.
The distribution of xg is a Gaussian mixture. Bottom: The visualization of the true
denoising distribution for varying step sizes conditioned on a fixed x5. The true denoising
distribution for a small step size (i.e., q(x4]/x5 = X)) is close to a Gaussian distribution.
However, it becomes more complex and multimodal as the step size increases.

Inspired by this observation, we propose to parameterize the denoising distribution with
an expressive multimodal distribution to enable denoising for large steps. We ensure the
denoising distribution to be expressive by parameterizing it with a deep generative model
instead of a simple Gaussian distribution, and we ensure the denoising distribution to be
multimodal by using latent variables, which lead to diverse output given the same condition
x¢. In particular, we introduce a novel generative model, termed as denoising diffusion GAN,
in which the denoising distributions are modeled with conditional GANs. In a denoising

diffusion GAN, the generator tries to generate a sample of denoised x;_1 conditioned on x¢,
177



and the discriminator tries to distinguish between generated x;_1 and real x;_; sampled
from the forward diffusion process. In image generation, we observe that our model obtains
sample quality and mode coverage competitive with diffusion models while taking only as
few as two denoising steps, achieving about 2000x speed-up in sampling compared to the
predictor-corrector sampling by Song et al. [2021b] on CIFAR-10.

One potential drawback of our model is that it introduces adversarial training, which may
cause mode collapse and training instability issues. However, we observe that our denoising
diffusion GAN does not suffer from mode collapse, and the training is stable. Compared to
traditional GANs, we show that our model significantly outperforms state-of-the-art GANs
in sample diversity while being competitive in sample fidelity. There are two possible expla-
nations. Firstly, our model breaks the generation task of GANs into several easier conditional
generation tasks, where each task is to perform a single denoising step. It is known that
conditional GANs are easier to train and suffer less from mode collapse than unconditional
GANSs. For example, all GANs trained on ImageNet dataset require label conditioning [Brock
et al., 2018]. Our method provides a natural way to formulate the generation problem with
several conditional sub-problems, even when label information is unavailable. Therefore,
from the perspective of GAN training, our method can be seen as a self-supervised con-
ditional GAN. Secondly, one important reason of mode collapse and training instability is
the overfitting of the discriminator, where the discriminator can distinguish between real
and fake samples too easily. In our model, the discriminator needs to distinguish between
real and fake x;_1, which is noisy except for the last denoising step. The diffusion process
smooths the data distribution, and it is more difficult to judge noisy samples. Therefore our
method provides a natural regularization to the discriminator.

In summary, we make the following contributions:

e We attribute the slow sampling of diffusion models to the Gaussian assumption in the

denoising distribution and propose to employ complex, multimodal denoising distribu-

178



tions.

e We propose denoising diffusion GANSs, a diffusion model whose reverse process is pa-

rameterized by conditional GANs.

e Through careful evaluations, we demonstrate that denoising diffusion GANs achieve
several orders of magnitude speed-up compared to current diffusion models for both
image generation and editing. We show that our model overcomes the deep generative
learning trilemma to a large extent, making diffusion models for the first time applicable

to interactive, real-world applications at a low computational cost.

6.2 Related Work

Diffusion-based models [Sohl-Dickstein et al., 2015, Ho et al., 2020] learn the finite-time
reversal of a diffusion process, sharing the idea of learning transition operators of Markov
chains with Goyal et al. [2017], Alain et al. [2016], Bordes et al. [2017]|. Since then, there
have been several improvements and alternatives to diffusion models. Song et al. [2021b]
generalize diffusion processes to continuous time, and provide a unified view of diffusion
models and denoising score matching [Vincent, 2011, Song and Ermon, 2019]. Jolicoeur-
Martineau et al. [2021b] add an auxiliary adversarial loss to the main objective. This is
fundamentally different from ours, as their auxiliary adversarial loss only acts as an image
enhancer, and they do not use latent variables; therefore, the denoising distribution is still
a unimodal Gaussian.

One major drawback of diffusion or score-based models is the slow sampling speed due
to a large number of iterative sampling steps. To alleviate this issue, multiple methods have
been proposed. Luhman and Luhman [2021] use knowledge distillation to distill a multi-step
denoising process into a single step. After training the denoising diffusion model, they gener-

ate a large number of samples that serve as their training set and train a network to predict

179



the generated sample given the initial noise input. However, training their method requires
generating samples, which can be time-consuming. Moreover, the iterative sampling process
is a random process, and it is unclear whether it can be represented by a deterministic trans-
formation of the initial noise. Their method has a significant degradation in sample quality.
[San-Roman et al., 2021] propose a learning scheme that can step-by-step adjust the noise
scheduling parameters for any given number of steps. However, the objective for the adjust-
ment is data likelihood, and it turns out that such a method cannot generate high quality
samples. Song et al. [2020a] generalizes the forward diffusion process of denoising diffusion
models, which is Markovian, to non-Markovian ones. They show that resulting variational
training objectives have a shared surrogate objective, which is exactly the objective used
to train original denoising diffusion models. Therefore, they can use pre-trained denoising
diffusion models and sampling with the corresponding reverse process associated with the
non-Markovian diffusion process, and they show that this results in significant speed-ups.
Similar ideas are used in [Kong and Ping, 2021]. Jolicoeur-Martineau et al. [2021a] propose
to use better SDE solvers that solve the reverse SDE faster than the naive Euler solver for
continuous-time diffusion models. LSGM [Vahdat et al., 2021] formulates a diffusion model
in the latent space of a VAE, and the VAE and the diffusion model are trained jointly with
ELBO objective. LSGM requires fewer sampling steps than denoising diffusion models on
the data space. This is because if the data marginal ¢(x;) is Gaussian, the true denoising
distribution g(x¢—1|x¢) is also a Gaussian distribution. The encoder of the VAE brings the
data distribution ¢(xg) and consequently g(x¢) closer to Gaussian. However, the problem of
transforming the data to Gaussian itself is challenging, and VAE encoders cannot solve it
perfectly. As a result, LSGM still requires tens to hundreds of steps on complex datasets.
Among variants of diffusion models, Gao et al. [2021] have the closest connection with
our method. They propose to model the single-step denoising distribution by a conditional

energy-based model (EBM), sharing the high-level idea of using expressive denoising distri-

180



butions with us. However, they motivate their method from the perspective of facilitating the
training of EBMs. More importantly, although only a few denoising steps are needed, expen-
sive MCMC has to be used to sample from each denoising step, making the sampling process
slow with ~180 network evaluations. ImageBART [Esser et al., 2021a] explores modeling the
denoising distribution of a diffusion process on discrete latent space with an auto-regressive
model per step in a few denoising steps. However, the auto-regressive structure of their
denoising distribution still makes sampling slow.

Since our model is trained with adversarial loss, our work is related to recent advances
in improving the sample quality and diversity of GANs, including data augmentation [Zhao
et al., 2020, Karras et al., 2020a], consistency regularization [Zhang et al., 2019, Zhao et al.,
2021] and entropy regularization [Dieng et al., 2019]. In addition, the idea of training gen-
erative models with smoothed distributions is also discussed in Meng et al. [2021a] for auto-

regressive models.

6.3 Denoising Diffusion GANs

Our goal is to reduce the number of denoising diffusion steps 7" required in the reverse process
of diffusion models. Inspired by the discussion in Section 6.1, we propose to model the
denoising distribution with an expressive multimodal distribution. Since conditional GANs
have been shown to model complex conditional distributions in the image domain [Mirza
and Osindero, 2014, Ledig et al., 2017, Isola et al., 2017], we adopt them to approximate the
true denoising distribution q(x;_1|x¢).

Specifically, our forward diffusion is set up similarly to the diffusion models in Equation
2.44 with the main assumption that 7" is assumed to be small (7" < 8) and each diffusion
step has larger ;. Our training is formulated by matching the conditional GAN generator

po(xi—1|x¢) and q(x¢_1|x¢) using an adversarial loss that minimizes a divergence D,q4, per

181



denoising step:

min Y~ By [Dadv (4(x—1[x0) o (xe—1[x2)] (6.2)
t>1

where D,4, can be Wasserstein distance, Jenson-Shannon divergence, or f-divergence de-
pending on the adversarial training setup [Arjovsky et al., 2017, Goodfellow et al., 2014,
Nowozin et al., 2016]. In our model, we rely on non-saturating GANs [Goodfellow et al.,
2014] that are widely used in successful GAN frameworks such as StyleGANs [Karras et al.,
2019, 2020b]. In this case, D,q4, takes a special instance of f-divergence called softened re-
verse KL [Shannon et al., 2020], which is different from the forward KL divergence used in
the original denoising diffusion model training in Equation 2.54.

To set up the adversarial training, we denote the time-dependent discriminator network
as Dg(x¢—1,%¢,1) : RY xRN xR — [0, 1], with parameters ¢. It takes the N-dimensional
xy_1 and x¢ as inputs, and decides whether x;_1 is a plausible denoised version of x;. The

discriminator is trained by:

m(gn Zl Eq(xt) [EQ(Xt—llxt) [—lOg(ng(Xt,l, Xt, t))] + Epg(xt_ﬂxt) [—lOg(l _Dgf)(xt*la Xt, t))]] )
[

(6.3)

where fake samples from py(x;_1|x¢) are contrasted against real samples from q(x;_1|x¢).
The first expectation requires sampling from ¢(x¢_1|x¢) which is unknown. However, we
use the identity g(x¢,x;—1) = [ dxoq(x0)q(x¢,x¢t—1(x0) = [ dxoq(x0)q(xt—1/x0)a(x¢[x¢—1)

to rewrite the first expectation in Equation 6.3 as:

]EQ(Xt)q(Xt—l‘Xt) |:_ log (D¢ (Xt_l’ Xt t))] = ]Eq(XO)q(Xt_l|X0)q(xt‘Xt_1) |:_ log (D¢ (Xt—17 Xt, t))]
(6.4)

182



Given the discriminator, we train the generator by

max > By ) B (. ) 108(Dgs (61, %4, 1), (6.5)
1>1

which updates the generator with the non-saturating GAN objective.
It is noteworthy that when we have only 1 time step, our model corresponds to training
an unconditional GAN, as the conditioning x; is a white noise and contains no information

about x(.

6.3.1 Parameterizing the Implicit Denoising Model

Instead of directly predicting x4 in the denoising step, diffusion models [Ho et al., 2020]

can be interpreted as parameterizing the denoising model by

po(x¢—1|xt) == q(xp—1]x¢, %0 = fp(x¢, 1)), (6.6)

in which first x( is predicted using the denoising model fy(x¢,t), and then, x;_; is sampled
using the posterior distribution ¢(x;_1|x¢,X() given x; and the predicted xy. The distribu-
tion q(x¢—1|xp,x¢) is intuitively the distribution over x;_1 when denoising from x; towards
X0, and it always has a Gaussian form for the diffusion process in Equation 2.44, indepen-
dent of the step size and complexity of the data distribution. The form of ¢(x;_1|xg, X¢) is
introduced in Equation 2.50.

The interpretation of sampling step as zg prediction followed by posterior sampling is
not obvious from the original description in Ho et al. [2020], but it is discussed by Song
et al. [2020a]. Here we provide arguments to make it clear. We want to show that parame-
terization of the denoising distribution for current diffusion models such as Ho et al. [2020]
can be interpreted as py(x¢—1|xt) = q(x¢—1|%¢, x0= fg(x¢t,t)). Ho et al. [2020] train a noise

prediction network e€g(x¢,t) which predicts the noise that perturbs data xg to x¢, and a

183



sample from py(x¢_1|x¢) is obtained as (see Algorithm 2 of Ho et al. [2020])

1 1-— it
Xi_1 = — | Xt — ——¢€p (X4, 1) | + 0y, 6.7
-1 \/a—t<t 1_@t9(t)) t (6.7)
where z ~ N(0,I) except for the last denoising step where z = 0, and o; = 4/ By is the
standard deviation of the Gaussian posterior distribution in Equation 2.51.

Firstly, notice that predicting the perturbation noise €g(x¢,t) is equivalent to predicting

xg. We know that x; is generated by adding € ~ A (0,I) noise as:

Xt = VX + /1 — aye, (6.8)

Hence, after predicting the noise with €g(x¢,t) we can obtain a prediction of xq using:

1
X) = —— (Xt — V1 —0ep Xt,t)) . 6.9
NG vV ( (6.9)
Next, we can plug the expression for xg in Equation 6.9 into the mean of the Gaussian

posterior distribution in Equation 2.51, and we have

e (xt, %) = fit <Xt, \/%—t (Xt — V1= Oét€9(Xt>t)>) (6.10)

= \/La_t <Xt — 11_—_027569(Xt,t)) (6-11)

after simplifications. Comparing this with Equation 6.7, we observe that Equation 6.7 simply
corresponds to sampling from the Gaussian posterior distribution. Therefore, although Ho
et al. [2020] use an alternative re-parameterization, their denoising distribution can still
be equivalently interpreted as pg(x¢—1|x¢) := q(x¢—1|x¢, X0 = fo(x¢, 1)), i.e, first predicting
x( using the time-dependent denoising model fy(x¢,t), and then sampling x; 1 using the

posterior distribution q(x¢_1|x¢,X() given x; and the predicted xg. Hence we show that the

184



parameterization of Ho et al. [2020] is equivalent to what we describe.

We follow the parameterization of Ho et al. [2020] and define py(x¢—1|x¢) by:

po(xe_1]xt) = / po(xolxe)a(xe—1 [t x0)dxo = / p(2)a(x_1]x¢, X0 = Gy (x1, 2, 1) )dz,

(6.12)

where py(xg|x¢) is the implicit distribution imposed by the GAN generator Gy(x¢,z,t) :
RY x RE x R — RY that outputs Xg given x¢ and an L-dimensional latent variable z ~
p(z) := N(z;0,TI).

Our parameterization has several advantages: Firstly, our pg(x;_1|x¢) is formulated sim-
ilar to DDPM [Ho et al., 2020]. Thus, we can borrow some inductive biases such as the
network structure design from DDPM. The main difference is that, in DDPM, xq is pre-
dicted as a deterministic mapping of x;, while in our case, xq is produced by the generator
with random latent variable z. This is the key difference that allows our denoising distribu-
tion py(x;_1|x¢) to become multimodal and complex in contrast to the unimodal denoising
model in DDPM. Secondly, note that for different t’s, x; has different levels of perturbation,
and hence using a single network to predict x; 1 directly at different ¢ may be difficult.
However, in our case the generator only needs to predict unperturbed xg and then add back
perturbation using q(x;_1|x¢,xg). Figure 6.4 visualizes our training pipeline.

We present pseudo codes of our training pipeline in Algorithm 1 and sampling process in

Algorithm 2.

6.5.2 Network Design

Network architecture is a critical component in the design of denoising diffusion GAN. Pre-
vious conditional GANs typically use a decoder structure for the generator, where the con-
ditioning information (such as label) is added to the network with embedding. In our case,

the condition x¢ is very important as the desired output of the generator is a less noisy
185



Algorithm 1 A training iteration of denoising diffusion GAN

Require: Number of time steps 7', training sample x, time-dependent discriminator Dy,

time dependent generator Gy.

1: Sample ¢ uniformly from {0,--- , 7 — 1}.

Using x as initial data, sample x; and x4y from the forward diffusion process with
Equation 2.46 and Equation 2.44.

Sample z ~ N (0, 1), and generate X6 = Gy(x¢41,2,1).

Sample xé using X¢41 and X6 from the Gaussian posterior distribution in Equation 2.50.
Update the discriminator by minimizing

—log (D¢ (Xt,XH_l,t)) — log (1 — Dy (xé,xﬂ_l,t))

w.r.t ¢.
Update the generator by maximizing

log (Dg (x4, X¢41,1))

w.r.t 0.

Algorithm 2 Sampling from denoising diffusion GAN

Require: Number of time steps 7', time dependent generator Gy.

o

. Sample xp ~ N (0, 7).
cfort=T-1,---,0do
Sample z ~ N(0, I), and generate X6 = Gy(x¢+1,2,1).
Sample X; using x¢41 and X6 from the Gaussian posterior distribution in Equation
2.50.
x6 is an sample from the denoising diffusion GAN.

186



Figure 6.4: The training process of denoising diffusion GAN.

version of x; (after the posterior sampling). Therefore, we cannot embed x; as conditioning,
as we need the value of each pixel of x; rather than a vector of abstract representation to
perform denoising. Therefore, we adopt a U-net structure for the generator, similar to the
noise prediction network in Ho et al. [2020]. In our generator, the condition x; is the input
to the network. With this design, the initial layer input to the generator is no longer the
noise vector z, so we borrow the idea of StyleGAN, whose input to the generator is a shared
constant tensor, to inject z to the network. StyleGAN is introduced in Section 2.5.3. Simply
speaking, StyleGAN transforms the noise vector z with fully connected layers and uses the
output to control the per-channel shift and scale parameters of normalization layers. We
adopt the same idea and design the adaptive group normalization module, which controls
the shift and scale parameters of the group normalization [Wu and He, 2018] module with
transformations of z. Group normalization divides the channels into groups, where each
group consists of a fixed number of consecutive channels and computes within each group

the mean and variance for normalization. In our case, given an input tensor, w € RMxN XC,

187



the adaptive group normalization module outputs a normalized tensor w € RM*NxC iy the

following way. Firstly, the latent variable z is transformed to shift and scale parameters for
each channel using fully connected layers u(z) € RC and o(z) € RY, and then the grouped

normalized tensor w = GN(w) is transformed by
w = u(z) + o(z)w (6.13)

to obtain w. The time conditioning to the generator is enforced by time embedding tech-
niques similar to Ho et al. [2020].

Our discriminator needs to discriminate between real and fake x; 1 conditioned on x;.
To do so, we concatenate x;_1 and x; in the channel dimension, and the resulting concate-
nated tensor serves as the input to the discriminator. The discriminator has a common
convolutional structure consisting of multiple ResNet blocks. The time conditioning to the

generator is enforced by the same time embedding as the generator.

6.3.3 Diffusion Process

Since we are using a very small number of diffusion steps, it is important to choose the

diffusion process and allocate each step in the process. In order to compute [ per step, we

use the discretization of the continuous-time extension of the process described in Equation

2.44, which is called the Variance Preserving (VP) SDE by Song et al. [2021b]. We compute

Bt based on the continuous-time diffusion model formulation, as it allows us to ensure that

the variance schedule stays the same independent of the number of diffusion steps. Let’s
t

define the normalized time variable by ¢’ := 4 which normalizes ¢ to [0,1]. The variance

function of VP SDE is given by

() =1— ¢~ Bunint’ =0.5(Bmax—Brmin)t”

(6.14)

188



with the constants fpax = 20 and S, = 0.1. Recall that sampling from ¢th step in the

forward diffusion process can be done with g(x¢|xg) = N (x¢; V/arxg, (1 —az)I). We compute

B¢ by solving 1 — ay = 02(%):
1-o?(L 4 (L) 42l
Br=l-ap=1-—t —1— 2 521) = 1 — ¢ Pnin(7) =05 Bmax=Pmin) 7 (5 15)
ar—1 1—0 (T)

6.4 Experimental Results

This section evaluates our proposed denoising diffusion GAN for the image synthesis problem.
First, we will present our main results of how our method overcomes the generative learning
trilemma on CIFAR-10. Then we will discuss ablation studies to better understand our
method, as well as additional results on mode coverage and training stability. Results on

high-resolution images and stroke-based generation will also be provided.

6.4.1 QOvercoming the Generative Learning Trilemma

One major highlight of our model is that it excels at all three criteria in the generative
learning trilemma. Here, we carefully evaluate our model’s performances on sample fidelity,
sample diversity, and sampling time and benchmark it against a comprehensive list of models
on the CIFAR-10 dataset.

Evaluation criteria: We adopt the commonly used Fréchet inception distance (FID)
[Heusel et al., 2017] and Inception Score (IS) [Salimans et al., 2016] for evaluating sample
fidelity. For sample diversity, we use the improved recall score from Kynkdanniemi et al.
[2019], which is an improved version of the original precision and recall metric proposed by
Sajjadi et al. [2018]. It is shown that an improved recall score reflects how the variation
in the generated samples matches that in the training set [Kynk&énniemi et al., 2019]. For
sampling time, we use the number of function evaluations (NFE) and the clock time when

generating a batch of 100 images on a V100 GPU.
189



Results: We present our quantitative results in Table 6.1. We observe that our sample
quality is competitive among the best diffusion models and GANs. Although some variants of
diffusion models obtain better IS and FID, they require a large number of function evaluations
to generate samples (while we use only 4 denoising steps). For example, our sampling time is
about 2000x faster than the predictor-corrector sampling by Song et al. [2021b] and ~20x
faster than FastDDPM [Kong and Ping, 2021]. Note that diffusion models can produce
samples in fewer steps while trading off the sample quality. To better benchmark our method
against existing diffusion models, we plot the FID score versus the sampling time of diffusion
models by varying the number of denoising steps (or the error tolerance for continuous-time
models) in Figure 6.6. The figure clearly shows the advantage of our model compared to
previous diffusion models. In particular, we achieve a nearly 40x speed-up over the fastest
denoising diffusion models while maintaining similar sample quality.

When comparing our model to GANs, we observe that only StyleGAN2 with adaptive
data augmentation has a slightly better sample quality than ours. However, from Table
6.1, we see that GANs have limited sample diversity, as their recall scores are below 0.5.
In contrast, our model obtains a significantly better recall score, even higher than several
advanced likelihood-based models, and is competitive among diffusion models. We show
qualitative samples of CIFAR-10 in Figure 6.7.

In summary, our model simultaneously excels at sample quality, sample diversity, and
sampling speed and tackles the generative learning trilemma to a large extent. We visualize

our model’s position in the trilemma in Figure 6.5.

6.4.2 Ablation Studies

Here, we provide additional insights into our model by performing ablation studies.
Number of denoising steps: The number of denoising steps (77) is an important

hyper-parameter of our model. In the first part of Table 6.2, we study the effect of using a

190



--DDPM --DDIM StyleGAN ADA —Ours

Quality
(FID)

Sampling -/

1-Recall
Time ecd

Figure 6.5: Comparing denoising diffusion GAN with other models in the generative learning
trilemma.

different number of denoising steps (7). We observe that 7'=1, which is the unconditional
GAN case, leads to significantly worse results with low sample diversity, indicated by the low
recall score. This confirms the benefits of breaking generation into several denoising steps,
especially for improving the sample diversity. When varying 7' > 1, we observe that T'=4
gives the best results, whereas there is a slight degradation in performance for larger 7. We
hypothesize that we may require a significantly higher capacity to accommodate larger T
as we need a conditional GAN for each denoising step.

Diffusion as data augmentation: Our model shares some similarities with recent
work on applying data augmentation to GANs [Karras et al., 2020a, Zhao et al., 2020]. To
study the effect of perturbing inputs, we train a one-shot GAN with our network structure
following the protocol in [Zhao et al., 2020] with the forward diffusion process as data aug-
mentation. Specifically, in Zhao et al. [2020], a differentiable transformation F' is applied
to the sample x (both real and generated) before sending it to the discriminator, and the

generator is updated by back-propagating through F. In our study, we choose F' to be

191



Figure 6.6: Sample quality vs sampling time trade-off.

192



Figure 6.7: CIFAR-10 qualitative samples of denoising diffusion GAN.

193



Table 6.1: Results for unconditional generation on CIFAR-10.

Model ISt FID] Recallf NFE | Time (s){
Denoising Diffusion GAN (ours), T=4 9.63 3.75 0.57 4 0.21
DDPM [Ho et al., 2020] 9.46 3.21 0.57 1000 80.5
NCSN [Song and Ermon, 2019] 8.87 253 - 1000 107.9
Adversarial DSM [Jolicoeur-Martineau et al., 2021b] - 6.10 - 1000 -
Likelihood SDE [Song et al., 2021a] - 2.87 - - -
Score SDE (VE) [Song et al., 2021b] 9.89 2.20 0.59 2000 423.2
Score SDE (VP) [Song et al., 2021b] 9.68 241 059 2000 4215
Probability Flow (VP) [Song et al., 2021b)] 9.83 3.08 0.57 140 50.9
LSGM [Vahdat et al., 2021] 9.87 2.10 0.61 147 44.5
DDIM, T=50 [Song et al., 2020a] 8.78  4.67 0.53 50 4.01
FastDDPM, T=50 [Kong and Ping, 2021] 898 341  0.56 50 4.01
Recovery EBM [Gao et al., 2021] 8.30 9.58 - 180 -
Improved DDPM [Nichol and Dhariwal, 2021] - 2.90 - 4000 -
VDM [Kingma et al., 2021] - 4.00 - 1000 -
UDM [Kim et al., 2021] 10.1  2.33 - 2000 -
D3PMs [Austin et al., 2021] 8.56 7.34 - 1000 -
Gotta Go Fast [Jolicoeur-Martineau et al., 2021a] - 2.44 - 180 -
DDPM Distillation [Luhman and Luhman, 2021] 8.36  9.36 0.51 1 -
SNGAN [Miyato et al., 2018] 8.22 21.7 0.44 1 -
SNGAN+DGflow [Ansari et al., 2021] 9.35  9.62 0.48 25 1.98
AutoGAN [Gong et al., 2019] 8.60 124 0.46 1 -
TransGAN [Jiang et al., 2021] 9.02 9.26 - 1 -
StyleGAN2 w/o ADA [Karras et al., 2020a] 9.18 8.32 0.41 1 0.04
StyleGAN2 w/ ADA [Karras et al., 2020a] 9.83 292 0.49 1 0.04
StyleGAN2 w/ Diffaug [Zhao et al., 2020] 9.40 5.79 0.42 1 0.04
Glow [Kingma and Dhariwal, 2018] 3.92 489 - 1 -
PixelCNN [Oord et al., 2016] 4.60 65.9 - 1024 -
NVAE [Vahdat and Kautz, 2020] 718 23.5 0.51 1 0.36
IGEBM [Du and Mordatch, 2019] 6.02  40.6 - 60 -
VAEBM [Xiao et al., 2021a 8.43 12.2 0.53 16 8.79

randomly sampled from the diffusion step. The result, presented in the second group of
Table 6.2, is significantly worse than our model, indicating that our model is not equivalent
to augmenting data before applying the discriminator.

Parametrization for py(x;_1|x¢): We study two alternative ways to parametrize the
denoising distribution for the same T = 4 setting. Instead of letting the generator produce
estimated samples of xg, we set the generator to directly output denoised samples x;_1
without posterior sampling (direct denoising), or output the noise ¢ that perturbs a clean
image to produce x¢ (noise generation). Note that the latter case is closely related to most

diffusion models where the network deterministically predicts the perturbation noise. In

194



Table 6.2: Ablation studies on CIFAR-10.

Model Variants ISt FID] Recallt

T=1 8.93 146 0.19
T=2 9.80 4.08 0.54
T=4 9.63 3.75 0.57
T=38 9.43 436 0.56

One-shot w/ aug 896 13.2  0.25

Direct denoising  9.10 6.03  0.53
Noise generation  8.79 8.04  0.52

No latent variable 8.37 20.6 0.42

Table 6.2, we show that although these alternative parametrizations work reasonably well,
our main parametrization outperforms them by a large margin.

Importance of latent variable: Removing latent variables z converts our denoising
model to a unimodal distribution. In the last line of Table 6.2, we study our model’s
performance without any latent variables z. We see that the sample quality is significantly
worse, suggesting the importance of multimodal denoising distributions. In Figure 6.8, we
visualize the effect of latent variables by showing samples of pg(xg|x1), where x7 is a fixed
noisy observation. We see that while the majority of information in the conditioning x1 is

preserved, the samples are diverse due to the latent variables.

6.4.3 Mode Coverage

Besides the recall score in Table 6.1, we also evaluate the mode coverage of our model on the
popular 25-Gaussians and StackedMNIST. The 25-Gaussians dataset is a 2-D toy dataset,
generated by a mixture of 25 two-dimensional Gaussian distributions, arranged in a grid.
We train our denoising diffusion GAN with 4 denoising steps and compare it to other models
in Figure 6.9. We observe that the vanilla GAN suffers severely from mode collapse, and
while techniques like WGAN-GP [Gulrajani et al., 2017] improve mode coverage, the sample

quality is still limited. In contrast, our model covers all the modes while maintaining high
195



Figure 6.8: Multi-modality of denoising distribution given the same noisy observation. Left:
clean image x( and perturbed image x1. Right: Three samples from py(xg|x1).

Figure 6.9: Qualitative results on the 25-Gaussians dataset.

sample quality. We also train a diffusion model and plot the samples generated by 100 and
500 denoising steps. We see that diffusion models require a large number of steps to maintain
high sample quality.

StackMNIST contains images generated by randomly choosing 3 MNIST images and
stacking them along the RGB channels. Hence, the data distribution has 1000 modes.
Following the setting of Lin et al. [2018], we report the number of covered modes and the
KL divergence from the categorical distribution over 1000 categories of generated samples to
true data in Table 6.3. We observe that our model covers all modes faithfully and achieves

the lowest KL, compared to GANs that are specifically designed for better mode coverage or
196



Table 6.3: Mode coverage on StackedMNIST.

Model ModestT KLJ{

VEEGAN ([Srivastava et al., 2017]) 762 2.173
PacGAN ([Lin et al., 2018]) 992 0.277
PresGAN ([Dieng et al., 2019]) 1000 0.115
InclusiveGAN ([Yu et al., 2020b)) 997 0.200
StyleGAN2 ([Karras et al., 2020b]) 940 0.424
Adv. DSM ([Jolicoeur-Martineau et al., 2021b]) 1000 1.49

VAEBM ([Xiao et al., 2021a)) 1000 0.087
Denoising Diffusion GAN (ours) 1000 0.071

StyleGAN2 which is known to have the best sample quality. Our model even has lower KL
divergence than some likelihood models such as VAEBM, suggesting that our model captures

the modes of training distribution faithfully.

6.4.4 Training Stability

In Fig. 6.10, we plot the discriminator loss for different time steps in the diffusion process
when T" = 4. We observe that the training of our denoising diffusion GAN is stable, and we do
not see any explosion in loss values, as is sometimes reported for other GAN methods such as
Brock et al. [2018]. The stability might be attributed to two reasons: First, the conditioning
on x¢ for both generator and discriminator provides a strong signal. The generator is required
to generate a few plausible samples given x¢, and the discriminator requires classifying them.
The x; conditioning keeps the discriminator and generator in a balance. Second, we are
training the GAN on relatively smooth distributions, as the diffusion process is known as
a smoothening process that brings the distributions of fake and real samples closer to each
other [Lyu, 2012]. As we can see from Fig. 6.10, the discriminator loss for ¢ > 0 is higher than
t = 0 (the last denoising step). Note that ¢ > 0 corresponds to training the discriminator
on noisy images, and in this case, the true and generator distributions are closer to each

other, making the discrimination harder and hence resulting in higher discriminator loss.

197



1.4 A

- o+ o+
nnn
[FER N el =]

12 A

1.0 A

D loss

0.8 1

0.6 1

0.4 1

T T T T
1 100000 200000 300000 400000
Training iterations

Figure 6.10: The discriminator loss per denoising step during training.

We believe that such a property prevents the discriminator from overfitting, which leads to

better training stability.

6.4.5 High Resolution Image

We train our model on datasets with larger images, including CelebA-HQ [Karras et al.,
2017] and LSUN Church [Yu et al., 2015] at 256 x 256px resolution. We report FID on these
two datasets in Table 6.4 and 6.5. Similar to CIFAR-10, our model obtains competitive
sample quality among the best diffusion models and GANs. In particular, in LSUN Church,
our model outperforms DDPM and ImageBART. Although, some GANs perform better on
this dataset, their mode coverage is not reflected by the FID score.

Qualitative samples of CelebA-HQ AND LSUN Church are presented in Figure 6.11 and
198



Table 6.4: Generative results on CelebA-HQ-256

Model FID]
Denoising Diffusion GAN (ours) 7.64
Score SDE [Song et al., 2021b] 7.23
LSGM [Vahdat et al., 2021] 7.22
UDM [Kim et al., 2021] 7.16
NVAE [Vahdat and Kautz, 2020] 29.7
VAEBM [Xiao et al., 2021a) 20.4
NCP-VAE [Aneja et al., 2021] 24.8
PGGAN [Karras et al., 2017 8.03
Adv. LAE [Pidhorskyi et al., 2020] 19.2
VQ-GAN [Esser et al., 2021b] 10.2
DC-AE [Parmar et al., 2021] 15.8

Table 6.5: Generative results on LSUN Church 256

Model FID|
Denoising Diffusion GAN (ours) 5.25
DDPM [Ho et al., 2020] 7.89
ImageBART [Esser et al., 2021a] 7.32
Gotta Go Fast (Jolicoeur-Martineau et al.) 25.67
PGGAN [Karras et al., 2017]) 6.42
StyleGAN [Karras et al., 2019] 4.21
StyleGAN2 [Karras et al., 2020b] 3.86
CIPS [Anokhin et al., 2021] 2.92

199



6.12 respectively.

6.4.6 Additional Results

Stroke-based Image Synthesis

Meng et al. [2021b] propose an interesting application of diffusion models to stroke-based
generation. Specifically, they perturb a stroke painting by the forward diffusion process,
and denoise it with a diffusion model. The method is particularly promising because it
only requires training an unconditional generative model on the target dataset and does
not require training images paired with stroke paintings like GAN-based methods [Sangkloy
et al., 2017, Park et al., 2019]. We apply our model to stroke-based image synthesis and
show qualitative results in Figure 6.13. The generated samples are realistic and diverse,
while the conditioning in the stroke paintings is faithfully preserved. Compared to Meng
et al. [2021b], our model enjoys a 1100x speedup in generation, as it takes only 0.16s to
generate one image at 256 resolution vs. 181s for Meng et al. [2021b]. This experiment
confirms that our proposed model enables the application of diffusion models to interactive

applications such as image editing.

Additional Visualization for py(xg|x;)

In Figure 6.14 and Figure 6.15, we show visualizations of samples from py(xg|x¢) for different
t. Note that except for pg(xg|x1), the samples from py(xg|x¢) do not need to be sharp, as they
are only intermediate outputs of the sampling process. The conditioning is less preserved as
the perturbation in x; increases, and in particular xp (x4 in our example) contains almost

no information of clean data xy.

200



Figure 6.11: Qualitative results on CelebA-HQ of denoising diffusion GAN.

201



Figure 6.12: Qualitative results on LSUN Church of denoising diffusion GAN.

202



Figure 6.13: Qualitative results on stroke-based synthesis. Top row: stroke paintings.
Bottom two rows: generated samples corresponding to the stroke painting.

6.4.7 FExperimental Details

In this section, we present our experimental settings in detail.

Network Structure

Generator: Our generator structure largely follows the U-net structure [Ronneberger et al.,
2015] used in NCSN++ [Song et al., 2021b], which consists of multiple ResNet blocks [He
et al., 2016] and Attention blocks [Vaswani et al., 2017]. Hyper-parameters for the network
design, such as the number of blocks and number of channels, are reported in Table 6.6.
We follow the default settings in Song et al. [2021b] for other network configurations not
mentioned in the table, including Swish activation function, upsampling and downsampling
with anti-aliasing based on Finite Impulse Response (FIR) [Zhang, 2019], re-scaling all skip
connections by \/Li’ using residual block design from BigGAN [Brock et al., 2018] and incor-
porating progressive growing architectures [Karras et al., 2020b]. See Appendix H of Song

et al. [2021b] for more details on these configurations.

203



Figure 6.14: Visualization of samples from pg(xg|x¢) for different ¢ on CelebAHQ. For each
example, the top row contains x; from diffusion process steps, where x( is a sample from
the dataset. The bottom rows contain 3 samples from py(xg|x¢) for different ¢’s.

204



Figure 6.15: Visualization of samples from py(xg|x¢) for different ¢ on LSUN Church. For
each example, the top row contains x; from diffusion process steps, where xq is a sample
from the dataset. The bottom rows contain 3 samples from py(xq|x;) for different ¢’s.

205



Table 6.6: Hyper-parameters for the generator network.

CIFARI10 CelebaHQ LSUN Church

# of ResNet blocks per scale 2 2 2
Initial # of channels 128 64 128
Channel multiplier for each scale (1,2,2,2) (1,1,2,2,4,4) (1,1,2,2,4,4)
Scale of attention block (16,) (16,) (16,)
Latent Dimension 256 100 100

# of latent mapping layers 3 3 3
Latent embedding dimension 512 256 256

We follow Ho et al. [2020] and use sinusoidal positional embeddings for conditioning
on integer time steps. The dimension for the time embedding is 4x the number of initial
channels presented in Table 6.6.

The fundamental difference between our generator network and the networks of previous
diffusion models is that our generator takes an extra latent variable z as input. We use
z ~ N(0,I) for all experiments. We replace all the group normalization (GN) layers in
the network with adaptive group normalization (AdaGN) layers to allow the input of latent
variables. The latent variable z is first transformed by a fully-connected network (called
mapping network), and then the resulting embedding vector, denoted by w, is sent to every
AdaGN layer. Each AdaGN layer contains one fully-connected layer that takes w as input,
and outputs the per-channel shift and scale parameters for the group normalization. The
network’s feature maps are then subject to affine transformations using these shift and scale
parameters of the AdaGN layers. The mapping network and the fully-connected layer in
AdaGN are independent of time steps ¢, as we found no extra benefit in incorporating time
embeddings in these layers. Details about latent variables are also presented in Table 6.6.

Discriminator: We design our time-dependent discriminator with a convolutional net-
work with ResNet blocks, where the design of the ResNet blocks is similar to that of the
generator. The discriminator tries to discriminate real and fake x4_ 1, conditioned on x4 and

t. The time conditioning is enforced by the same sinusoidal positional embedding as in the

206



generator. The x; conditioning is enforced by concatenating x; and x;_1 as the input to
the discriminator. We use LeakyReLU activations with a negative slope 0.2 for all layers.
Similar to Karras et al. [2020b], we use a minibatch standard deviation layer after all the

ResNet blocks. We present the exact architecture of discriminators in Table 6.7.

Table 6.7: Network structures for the discriminator.

CelebAHQ and LSUN Church

1 x 1 conv2d, 128
ResBlock down, 256

CIFAR-10
1 x 1 conv2d, 128

ResBlock, 128
ResBlock down, 256
ResBlock down, 512
ResBlock down, 512
minibatch std layer
Global Sum Pooling

ResBlock down, 512
ResBlock down, 512
ResBlock down, 512
ResBlock down, 512
ResBlock down, 512
minibatch std layer

FC layer — scalar Global Sum Pooling

FC layer — scalar

Training

Objective: We train our denoising diffusion GAN with the following adversarial objective:

T
win Y B, [ ot ) [ 108D (61, %0 D] + By, ) [ = 108(1 = Doy (-1, %0,1))]
t=1

T

meax D B ) B s [ 108Dy (-1, 1, 1) )]
=1

Similar to Ho et al. [2020], during training we randomly sample an integer time step
t €[1,2,3,4] for each datapoint in a batch. Besides the main objective, we also add an Ry

regularization term [Mescheder et al., 2018] to the objective for the discriminator. The Ry

207



Table 6.8: Optimization hyper-parameters.

CIFAR10 CelebaHQ LSUN Church

Initial learning rate for discriminator 1074 1074 1074
Initial learning rate for generator 1.6x107% 1.6x10* 2x 1074
Adam optimizer (51 0.5 0.5 0.5
Adam optimizer (39 0.9 0.9 0.9
EMA 0.9999 0.999 0.999
Batch size 128 32 64

# of training iterations 400k 750k 600k
# of GPUs 4 8 8

term is defined as

Ry(¢) = %Eq(xt)q(xt_ﬂxt) [HvXt—lDQS(Xt—laXtat)”Z] : (6.16)
where 7 is the coefficient for the regularization. We use v = 0.05 for CIFAR-10, and v = 1
for CelebAHQ and LSUN Church.

Optimization: We train our models using the Adam optimizer [Kingma and Ba, 2015].
We use cosine learning rate decay [Loshchilov and Hutter, 2016] for training both the gener-
ator and discriminator. Similar to Ho et al. [2020], Song et al. [2021b], Karras et al. [2020a],
we observe that applying an exponential moving average (EMA) on the generator is crucial
to achieve high performance. We summarize the optimization hyper-parameters in Table
6.8.

We train our models on CIFAR-10 using 4 V100 GPUs. On CelebAHQ and LSUN Church
we use 8 V100 GPUs. The training takes approximately 48 hours on CIFAR-10, and 180
hours on CelebAHQ and LSUN Church.

Evaluation

When evaluating IS, FID and recall score, we use 50k generated samples for CIFAR-10 and

LSUN Church, and 30k samples for CelebAHQ (since the CelebA HQ dataset contains only
208



30k samples).

When evaluating sampling time, we use models trained on CIFAR-10 and generate a
batch of 100 samples. We benchmark the sampling time on a machine with a single V100
GPU. We use Pytorch 1.9.0 and CUDA 11.0.

Ablation Studies

Here we introduce the settings for the ablation study in Section 6.4.2. We observe that
training requires a larger number of training iterations when 7' is larger. As a result, we
train the model for each 7" until the FID score does not increase any further. The number
of training iteration is 200k for 7' =1 and 7' = 2, 400k for 7' = 4 and 600k for 7" = 8. We
use the same network structures and optimization settings as in the main experiments.

For the data augmentation baseline, we follow the differentiable data augmentation
pipeline in Zhao et al. [2020]. In particular, for every (real or fake) image in the batch,
we perturbed it by sampling from a random timestep at the diffusion process (except the
last diffusion step where the information of data is completely destroyed). We find the re-
sults insensitive to the number of possible perturbation levels (i.e, the number of steps in the
diffusion process), and we report the result using a diffusion process with 4 steps. Since the
perturbation by the diffusion process is differentiable, we can train both the discriminator
and generator with the perturbed samples. See Zhao et al. [2020] for a detailed explanation
for the training pipeline.

For the experiments on alternative parametrizations, we use T' = 4 for the diffusion
process and keep other settings the same as in the main experiments.

For the experiment on training a model without latent variables, similar to the main
experiments, the generator takes the conditioning x; as its input, and the time conditioning
is still enforced by the time embedding. However, the AdaGN layers are replaced by plain

GN layers, such that no latent variable is needed, and the mapping network for z is removed.

209



Other settings follow the main experiments.

Toy data and Stacked MNIST

For the 25-Gaussian toy dataset, both our generator and discriminator have 3 fully-connected
layers each with 512 hidden units and LeakyReLU activations (negative slope of 0.2). We
enforce both the conditioning on x; and t by concatenation with the input. We use the
Adam optimizer with a learning rate of 10~ for both the generator and discriminator. The
batch size is 512, and we train the model for 50k iterations.

Our experimental settings for StackedMNIST are the same as those for CIFAR-10, except

that we train the model for only 150k iterations.

6.5 Conclusion

Deep generative learning frameworks still struggle with addressing the generative learning
trilemma. Diffusion models achieve exceptionally high-quality and diverse sampling. How-
ever, their slow sampling and high computational cost do not yet allow them to be widely
applied in real-world applications. In this paper, we argued that one of the main sources
of slow sampling in diffusion models is the Gaussian assumption in the denoising distribu-
tion, which is justified only for very small denoising steps. To remedy this, we proposed
denoising diffusion GANs that model each denoising step using a complex multimodal dis-
tribution, enabling us to take large denoising steps. In extensive experiments, we showed
that denoising diffusion GANs achieve high sample quality and diversity competitive to the
original diffusion models while being orders of magnitude faster at sampling. Compared to
traditional GANs, our proposed model enjoys better mode coverage and sample diversity.
Our denoising diffusion GAN overcomes the generative learning trilemma to a large extent,
allowing diffusion models to be applied to real-world problems with low computational cost.

Denoising diffusion GAN successfully tackles the generative learning trilemma. Our

210



model achieves

1. Faster sampling, due to the multimodal complex denoising distribution parametrized

by conditional GAN;

2. Better mode coverage, due to simple conditional generation problem at each step

3. High-quality samples, due to adversarial training

Our model is a symbiotic composition of denoising diffusion models and GANs. On one
hand, conditional GAN enables the denoising distribution to be multi-modal and expressive,
allowing larger denoising steps and significantly faster sampling. On the other hand, the
denoising diffusion model breaks the generation into several easier conditional tasks, where
each task is defined on smoothened data perturbed by the noise so that the training is

stabilized and the mode collapse issue is greatly alleviated.

211



CHAPTER 7
CONCLUSION

7.1 Summary

The dissertation follows the journey toward pushing the limits of deep generative models.
After a high-level introduction of generative learning in Chapter 1, we dive into existing deep
generative models that are fundamental in Chapter 2. In particular, we review Variational
Auto-encoders, Normalizing Flows, Energy-based Models, Denoising Diffusion Models, and
Generative Adversarial Networks. We list and carefully analyze their pros and cons. The
analysis of existing generative models provides the motivation for later chapters, where we
propose new models with the idea of symbiotic composition, which is to combine two existing
models together with the hope that the new model will enjoy the best of both worlds.

In Chapter 3, we propose Generative Latent Flow, which is a combination of auto-
encoders and normalizing flows. The auto-encoder learns to reconstruct data with low-
dimensional latent variables, and the normalizing flow learns to map the latent variables
to noise and vice versa. The resulting model shows superior generative performance over
previous auto-encoder based models due to the expressive prior distribution modeled by the
normalizing flow, and the auto-encoder makes the training of the normalizing flow easier by
mapping the data to a lower-dimensional space.

In Chapter 4, we introduce the idea of exponential tilting with EBMs. We propose to
use a base generative model, such as a VAE or a normalizing flow, to capture the shape of
the data distribution roughly and later introduce a EBM to refine the obtained distribution.
The base generative model makes the training of EBM much more efficient by providing a
good starting point as well as a smooth latent space that allows easier MCMC sampling.
The EBM refines the density and significantly improves the sample quality by reducing the

density mismatch between the base model and the true data distribution.

212



In Chapter 5, we investigate the role of Langevin dynamics in the maximum likelihood
training of EBMs. We treat the Langevin dynamics as an implicit generator model by
removing the noise term and further introduce the generator loss of WGAN to optimize
the implicit generator. Such a combination of EBMs and GANs improves both the sample
quality and training stability of EBMs.

In Chapter 6, we tackle the slow sampling issue of denoising diffusion models. We at-
tribute the slow sampling issue to the Gaussian assumption of the reverse process and propose
to model the single-step denoising distribution with conditional GANs. The resulting denois-
ing diffusion GAN model obtains competitive sample quality with denoising diffusion models
while enjoying 1000x speed-up in sampling. In addition, the denoising diffusion framework
also stabilizes the training of GANs and alleviates the mode collapse issue due to the fact
that the GANs are trained with conditional generation tasks on smoothed data. We hope
that our findings in this dissertation may serve as a minor contribution to the development
of generative learning, and motivate follow up work that further pushes the limits of deep

generative models.

7.2 Future Work

In future work, we wish to continue the journey in the field of deep generative models.
Specifically, it is our hope to design stronger generative models as well as extend the models
to different domains. For example, after the publication of denoising diffusion GAN, the
model has been applied to the task of text-to-speech synthesis by Liu et al. [2022]. We believe
that all methods proposed in this dissertation have the potential to be used in domains other
than image, such as video, sequence, graph and 3D point cloud.

Generative modeling is one sub-topic of the wider concept of unsupervised learning. Re-
cently, we have seen tremendous progress in the field of unsupervised learning that tries

to learn useful representations without labels and close the gap to supervised models. In

213



the image domain, the field of unsupervised learning is currently dominated by contrastive
pre-training [Chen et al., 2020b, He et al., 2020]. However, recently generative pretraining
has also shown promising results [He et al., 2021]. There are other possibilities of extend-
ing generative models to the wider context of unsupervised learning and applying them to
downstream tasks.

One additional topic of generative models that has recently become popular is multi-
modality generation. For example, one interesting task is to generate images conditioned
on given text [Ramesh et al., 2021, Nichol et al., 2021]. This is a promising direction with
many exciting real-world applications. We would like to explore more possibilities in this

direction.

214



REFERENCES

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for
boltzmann machines. Cognitive science, 9(1):147-169, 1985.

Guillaume Alain, Yoshua Bengio, Li Yao, Jason Yosinski, Eric Thibodeau-Laufer, Saizheng
Zhang, and Pascal Vincent. Gsns: generative stochastic networks. Information and Infer-
ence: A Journal of the IMA, 5(2):210-249, 2016.

Yali Amit, Ulf Grenander, and Mauro Piccioni. Structural image restoration through de-
formable templates. Journal of the American Statistical Association, 86(414):376-387,
1991.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313-326, 1982.

Jyoti Aneja, Alex Schwing, Jan Kautz, and Arash Vahdat. A contrastive learning approach
for training variational autoencoder priors. Advances in Neural Information Processing
Systems, 34, 2021.

Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb Sterkin, Victor Lempitsky, and
Denis Korzhenkov. Image generators with conditionally-independent pixel synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14278-14287, 2021.

Abdul Fatir Ansari, Ming Liang Ang, and Harold Soh. Refining deep generative models
via discriminator gradient flow. In International Conference on Learning Representations,
2021.

Michael Arbel, L. Zhou, and A. Gretton. Generalized energy based models. arXiv preprint
arXiw:2005.05033, 2020.

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative
adversarial networks. arXww preprint arXiv:1701.04862, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International conference on machine learning, pages 214-223. PMLR, 2017.

Jacob Austin, Daniel Johnson, Jonathan Ho, Danny Tarlow, and Rianne van den Berg. Struc-
tured denoising diffusion models in discrete state-spaces. arXiv preprint arXiv:2107.03006,
2021.

Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint
arXiv:1801.01973, 2018.

Matthias Bauer and Andriy Mnih. Resampled priors for variational autoencoders. arXiv
preprint arXiw:1810.11428, 2018.

215



Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jorn-Henrik Ja-
cobsen. Invertible residual networks. In International Conference on Machine Learning,
pages 573-582. PMLR, 2019.

Rianne van den Berg, Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Sylvester
normalizing flows for variational inference. arXiv preprint arXiv:1805.05649, 2018.

Piotr Bojanowski, Armand Joulin, David Lopez-Paz, and Arthur Szlam. Optimizing the
latent space of generative networks. arXiv preprint arXiv:1707.05776, 2017.

Florian Bordes, Sina Honari, and Pascal Vincent. Learning to generate samples from noise
through infusion training. arXiv preprint arXiv:1703.06975, 2017.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. arXww preprint arXiw:1511.06549,
2015.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity
natural image synthesis. arXiw preprint arXiv:1809.11096, 2018.

Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
arXiwv preprint arXiw:1509.00519, 2015.

Ruojin Cai, Guandao Yang, Hadar Averbuch-Elor, Zekun Hao, Serge Belongie, Noah Snavely,
and Bharath Hariharan. Learning gradient fields for shape generation. In Furopean Con-
ference on Computer Vision, pages 364-381. Springer, 2020.

Miguel A Carreira-Perpinan and Geoffrey Hinton. On contrastive divergence learning. In
International workshop on artificial intelligence and statistics, pages 33—40. PMLR, 2005.

Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan Cao,
and Yoshua Bengio. Your GAN is secretly an energy-based model and you should use
discriminator driven latent sampling. arXiv preprint arXiw:2003.06060, 2020.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William
Chan. Wavegrad: Estimating gradients for waveform generation. arXiv preprint
arXiw:2009.00713, 2020a.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordi-
nary differential equations. Advances in neural information processing systems, 31, 2018a.

Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jorn-Henrik Jacobsen. Resid-
ual flows for invertible generative modeling. Advances in Neural Information Processing
Systems, 32, 2019.

Scott Chen and Ramesh Gopinath. Gaussianization. Advances in neural information pro-
cessing systems, 13, 2000.

216



Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of dis-
entanglement in variational autoencoders. In Advances in Neural Information Processing
Systems, pages 2610-2620, 2018b.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597-1607. PMLR, 2020b.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.
Infogan: Interpretable representation learning by information maximizing generative ad-
versarial nets. Advances in neural information processing systems, 29, 2016.

Rewon Child. Very deep vaes generalize autoregressive models and can outperform them on
images. In International Conference on Learning Representations, 2021.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based infer-
ence. Proceedings of the National Academy of Sciences, 117(48):30055-30062, 2020.

Bin Dai and David Wipf. Diagnosing and enhancing VAE models. In International Confer-
ence on Learning Representations, 2019.

Constantinos Daskalakis and loannis Panageas. The limit points of (optimistic) gradient

descent in min-max optimization. Advances in Neural Information Processing Systems,
31, 2018.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from in-
complete data via the em algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1-22, 1977.

Zhiwei Deng, Megha Nawhal, Lili Meng, and Greg Mori. Continuous graph flow. arXiv
preprint arXiw:1908.02436, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXw:1810.04805, 2018.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in Neural Information Processing Systems, 34, 2021.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya
Sutskever. Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341,
2020.

Adji B Dieng, Francisco JR Ruiz, David M Blei, and Michalis K Titsias. Prescribed gener-
ative adversarial networks. arXiv preprint arXiv:1910.04302, 2019.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent compo-
nents estimation. arXiv preprint arXiw:1410.8516, 2014.

217



Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXw:1605.08803, 2016.

Jeff Donahue, Philipp Krahenbiihl, and Trevor Darrell. Adversarial feature learning. arXiv
preprint arXiw:1605.09782, 2016.

Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models.
arXw preprint arXiw:1903.08689, 2019.

Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based
models. Advances in Neural Information Processing Systems, 33:6637-6647, 2020.

Albert Einstein. Uber die von der molekularkinetischen theorie der wirme geforderte bewe-
gung von in ruhenden fliissigkeiten suspendierten teilchen. Annalen der physik, 4, 1905.

Patrick Esser, Robin Rombach, Andreas Blattmann, and Bjorn Ommer. Imagebart: Bidi-
rectional context with multinomial diffusion for autoregressive image synthesis. arXiv
preprint arXiv:2108.08827, 2021a.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In Proceedings of the IEEE/CVFE Conference on Computer Vision and
Pattern Recognition, pages 12873-12883, 2021b.

Farzan Farnia and Asuman Ozdaglar. Do gans always have nash equilibria? In International
Conference on Machine Learning, pages 3029-3039. PMLR, 2020.

William Feller. On the theory of stochastic processes, with particular reference to applica-
tions. In Proceedings of the [First] Berkeley Symposium on Mathematical Statistics and
Probability, pages 403-432. University of California Press, 1949.

Ruiqi Gao, Erik Nijkamp, Diederik P Kingma, Zhen Xu, Andrew M Dai, and Ying Nian
Wu. Flow contrastive estimation of energy-based models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 7518-7528, 2020.

Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning energy-
based models by diffusion recovery likelihood. In International Conference on Learning
Representations, 2021.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEFE Transactions on pattern analysis and machine in-

telligence, pages 721-741, 1984.

Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning. In
Proceedings of the annual meeting of the cognitive science society, volume 36, 2014.

Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard Scholkopf.

From variational to deterministic autoencoders. arXiv preprint arXiw:1903.12436, 2019.

218



Pedro J Gongalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan
Ocal, Giacomo Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad,
Tim P Vogels, et al. Training deep neural density estimators to identify mechanistic
models of neural dynamics. FElife, 9:e56261, 2020.

Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang Wang. Autogan: Neural architecture
search for generative adversarial networks. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3224-3234, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27, 2014.

Anirudh Goyal, Nan Rosemary Ke, Surya Ganguli, and Yoshua Bengio. Variational walk-
back: Learning a transition operator as a stochastic recurrent net. arXiv preprint
arXiv:1711.02282, 2017.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud.
Ffjord: Free-form continuous dynamics for scalable reversible generative models. arXiv
preprint arXiw:1810.01367, 2018.

Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad
Norouzi, and Kevin Swersky. Your classifier is secretly an energy based model and you
should treat it like one. In International Conference on Learning Representations, 2020.

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schoélkopf, and Alex Smola.
A kernel method for the two-sample-problem. Advances in neural information processing
systems, 19, 2006.

Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-gan: Combining maximum likelihood
and adversarial learning in generative models. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. Advances in neural information pro-
cessing systems, 30, 2017.

Michael U. Gutmann and Aapo Hyvéarinen. Noise-contrastive estimation of unnormalized
statistical models, with applications to natural image statistics. Journal of Machine Learn-
ing Research, 13(11):307-361, 2012.

David Ha and Jiirgen Schmidhuber. Recurrent world models facilitate policy evolution. In
Advances in Neural Information Processing Systems, 2018.

Tian Han, Erik Nijkamp, Xiaolin Fang, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu.
Divergence triangle for joint training of generator model, energy-based model, and infer-

ential model. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8670-8679, 2019.

219



Tian Han, Erik Nijkamp, Lingi Zhou, Bo Pang, Song-Chun Zhu, and Ying Nian Wu. Joint
training of variational auto-encoder and latent energy-based model. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7978-7987,
2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770-778, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 9729-9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked
autoencoders are scalable vision learners. arXiv preprint arXiw:2111.06377, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. Gans trained by a two time-scale update rule converge to a local nash equilibrium.
Advances in neural information processing systems, 30, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual
concepts with a constrained variational framework. ICLR, 2016.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence.
Neural computation, 14(8):1771-1800, 2002.

Geoffrey E Hinton. Deep belief networks. Scholarpedia, 4(5):5947, 2009.

Geoffrey E Hinton. A practical guide to training restricted boltzmann machines. In Neural
networks: Tricks of the trade, pages 599-619. Springer, 2012.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Ad-
vances in Neural Information Processing Systems, 33:6840-6851, 2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim
Salimans. Cascaded diffusion models for high fidelity image generation. arXiv preprint
arXw:2106.15282, 2021.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and
Tim Salimans. Cascaded diffusion models for high fidelity image generation. Journal of
Machine Learning Research, 23(47):1-33, 2022.

Matthew Hoffman, Pavel Sountsov, Joshua V Dillon, Ian Langmore, Dustin Tran, and Srini-
vas Vasudevan. Neutra-lizing bad geometry in hamiltonian monte carlo using neural trans-
port. arXiv preprint arXiw:1903.03704, 2019.

220



Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve up
the variational evidence lower bound. In Workshop in Advances in Approrimate Bayesian
Inference, NIPS, 2016.

Yedid Hoshen and Lior Wolf. Nam: Non-adversarial unsupervised domain mapping. In
Proceedings of the European Conference on Computer Vision (ECCYV), pages 436-451,
2018.

Yedid Hoshen, Ke Li, and Jitendra Malik. Non-adversarial image synthesis with generative
latent nearest neighbors. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5811-5819, 2019.

Chin-Wei Huang, Ahmed Touati, Laurent Dinh, Michal Drozdzal, Mohammad Havaei, Lau-
rent Charlin, and Aaron Courville. Learnable explicit density for continuous latent space
and variational inference. arXiv preprint arXiw:1710.02248, 2017.

Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, and Aaron Courville. Convex
potential flows: Universal probability distributions with optimal transport and convex
optimization. In International Conference on Learning Representations, 2021a.

Chin-Wei Huang, Jae Hyun Lim, and Aaron Courville. A variational perspective on diffusion-
based generative models and score matching. arXiv preprint arXiv:2106.02808, 2021b.

Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive instance
normalization. In Proceedings of the IEEE international conference on computer vision,
pages 1501-1510, 2017.

Aapo Hyvérinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation
with conditional adversarial networks. In Proceedings of the IEEE conference on computer
viston and pattern recognition, pages 1125-1134, 2017.

Oleg Ivanov, Michael Figurnov, and Dmitry Vetrov. Variational autoencoder with arbitrary
conditioning. In International Conference on Learning Representations, 2019.

Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alex Dimakis, and Jonathan Tamir.
Robust compressed sensing MRI with deep generative priors. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

Christopher Jarzynski. Equilibrium free-energy differences from nonequilibrium measure-
ments: A master-equation approach. Physical Review E, 56(5):5018, 1997.

Tony Jebara. Machine learning: discriminative and generative, volume 755. Springer Science
& Business Media, 2012.

221



Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two transformers can make
one strong gan. arXw preprint arXiw:2102.07074, 2021.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer

and super-resolution. In European conference on computer vision, pages 694-711. Springer,
2016.

Richard M Johnson. The minimal transformation to orthonormality. Psychometrika, 31(1):
61-66, 1966.

Alexia Jolicoeur-Martineau, Ke Li, Rémi Piché-Taillefer, Tal Kachman, and Ioannis
Mitliagkas. Gotta go fast when generating data with score-based models. arXiv preprint
arXiw:2105.14080, 2021a.

Alexia Jolicoeur-Martineau, Rémi Piché-Taillefer, Ioannis Mitliagkas, and Remi Tachet des
Combes. Adversarial score matching and improved sampling for image generation. In
International Conference on Learning Representations, 2021b.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans
for improved quality, stability, and variation. arXiv preprint arXiw:1710.10196, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for genera-
tive adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 4401-4410, 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo

Aila. Training generative adversarial networks with limited data. arXiv preprint
arXiw:2006.06676, 2020a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8110-8119, 2020b.

Tero Karras, Miika Aittala, Samuli Laine, Erik Harkonen, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. Alias-free generative adversarial networks. Advances in Neural Information
Processing Systems, 34, 2021.

Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and II-Chul Moon. Score
matching model for unbounded data score. arXiv preprint arXiv:2106.05527, 2021.

Hyunjik Kim and Andriy Mmnih. Disentangling by factorising. arXiw preprint
arXiw:1802.05983, 2018.

Sungwon Kim, Sang-gil Lee, Jongyoon Song, Jaehyeon Kim, and Sungroh Yoon. Flowavenet:
A generative flow for raw audio. arXiv preprint arXiv:1811.02155, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

222



Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiw:1312.6114, 2013.

Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion
models. arXiv preprint arXiw:2107.00650, 2021.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolu-
tions. Advances in neural information processing systems, 31, 2018.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-
supervised learning with deep generative models. Advances in neural information pro-
cessing systems, 2014.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. Advances in neural infor-
mation processing systems, 29, 2016.

Alexej Klushyn, Nutan Chen, Richard Kurle, Botond Cseke, and Patrick van der Smagt.
Learning hierarchical priors in vaes. arXiw preprint arXiv:1905.04982, 2019.

Jungil Kong, Jachyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks
for efficient and high fidelity speech synthesis. Advances in Neural Information Processing
Systems, 33:17022-17033, 2020.

Zhifeng Kong and Kamalika Chaudhuri. The expressive power of a class of normalizing
flow models. In International Conference on Artificial Intelligence and Statistics, pages

3599-3609. PMLR, 2020.

Zhifeng Kong and Wei Ping. On fast sampling of diffusion probabilistic models. arXiv
preprint arXiw:2106.00132, 2021.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A
versatile diffusion model for audio synthesis. In International Conference on Learning
Representations, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. Technical report, 2009.

Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine,
Laurent Dinh, and Durk Kingma. Videoflow: A conditional flow-based model for stochastic
video generation. arXiv preprint arXiv:1903.01454, 2019.

Karol Kurach, Mario Luci¢, Xiaohua Zhai, Marcin Michalski, and Sylvain Gelly. A large-
scale study on regularization and normalization in gans. In International Conference on
Machine Learning, pages 3581-3590. PMLR, 2019.

223



Tuomas Kynkéanniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila.
Improved precision and recall metric for assessing generative models. arXiv preprint
arXiv:1904.06991, 2019.

Y. Lecun. The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/,
2010.

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejan-
dro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative adversarial network. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 4681-4690,
2017.

Don S Lemons and Anthony Gythiel. Paul langevin’s 1908 paper “on the theory of brownian
motion” [“sur la théorie du mouvement brownien,” cr acad. sci.(paris) 146, 530-533 (1908)].
American Journal of Physics, 65(11):1079-1081, 1997.

Ke Li and Jitendra Malik. Implicit maximum likelihood estimation. arXiv preprint
arXiw:1809.09087, 2018.

Yang Li, Shoaib Akbar, and Junier Oliva. Acflow: Flow models for arbitrary conditional
likelihoods. In International Conference on Machine Learning, pages 5831-5841. PMLR,
2020.

Zengyi Li, Yubei Chen, and Friedrich T Sommer. Annealed denoising score matching: Learn-
ing energy-based models in high-dimensional spaces. arXiv preprint arXiw:1910.07762,
2019a.

Zengyi Li, Yubei Chen, and Friedrich T Sommer. Learning energy-based models in
high-dimensional spaces with multi-scale denoising score matching. arXiv preprint
arXiw:1910.07762, 2019b.

Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In International Conference on Learning Representations,
2018.

Chieh Hubert Lin, Chia-Che Chang, Yu-Sheng Chen, Da-Cheng Juan, Wei Wei, and Hwann-
Tzong Chen. Coco-gan: generation by parts via conditional coordinating. In Proceedings
of the IEEE International Conference on Computer Vision, pages 4512-4521, 2019.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave

minimax problems. In International Conference on Machine Learning, pages 6083-6093.
PMLR, 2020.

Zinan Lin, Ashish Khetan, Giulia Fanti, and Sewoong Oh. Pacgan: The power of two samples
in generative adversarial networks. In Advances in neural information processing systems,
pages 1498-1507, 2018.

224



Hao Liu and Pieter Abbeel. Hybrid discriminative-generative training via contrastive learn-
ing. arXiwv preprint arXiv:2007.09070, 2020.

Songxiang Liu, Dan Su, and Dong Yu. Diffgan-tts: High-fidelity and efficient text-to-speech
with denoising diffusion gans. arXiv preprint arXiv:2201.11972, 2022.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in
the wild. In Proceedings of the IEEE international conference on computer vision, pages

3730-3738, 2015.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXw preprint arXiw:1608.05983, 2016.

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are gans
created equal? a large-scale study. Advances in neural information processing systems, 31,
2018.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc
Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. arXiv
preprint arXiv:2201.09865, 2022.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for
improved sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Siwei Lyu.  Interpretation and generalization of score matching. arXiw preprint
arXiw:1205.2629, 2012.

Lars Maalge, Marco Fraccaro, Valentin Liévin, and Ole Winther. Biva: A very deep hierarchy
of latent variables for generative modeling. Advances in neural information processing
systems, 32, 2019.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An
invertible flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600,
2019.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey.
Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smol-
ley. Least squares generative adversarial networks. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 2794-2802, 2017.

Lukasz Maziarka, Agnieszka Pocha, Jan Kaczmarczyk, Krzysztof Rataj, Tomasz Danel, and
Michat Warchol. Mol-cyclegan: a generative model for molecular optimization. Journal
of Cheminformatics, 12(1):1-18, 2020.

225



Chenlin Meng, Jiaming Song, Yang Song, Shengjia Zhao, and Stefano Ermon. Improved
autoregressive modeling with distribution smoothing. arXiv preprint arXiv:2103.15089,
2021a.

Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021b.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for gans
do actually converge? In International conference on machine learning, pages 3481-3490.

PMLR, 2018.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Gautam Mittal, Jesse Engel, Curtis Hawthorne, and Ian Simon. Symbolic music generation
with diffusion models. arXiv preprint arXiv:2103.16091, 2021.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normal-
ization for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Thomas Miiller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novak. Neural
importance sampling. ACM Transactions on Graphics (TOG), 38(5):1-19, 2019.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshmi-
narayanan. Do deep generative models know what they don’t know? arXww preprint
arXiw:1810.09136, 2018.

Radford M Neal. Probabilistic inference using Markov chain Monte Carlo methods. Depart-
ment of Computer Science, University of Toronto Toronto, ON, Canada, 1993.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11(2):125-139,
2001.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte
carlo, 2(11):2, 2011.

Andrew Ng and Michael Jordan. On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes. Advances in neural information processing systems,
14, 2001.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob Mc-
Grew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International Conference on Machine Learning, pages 8162-8171. PMLR, 2021.

226



Erik Nijkamp, Mitch Hill, Song-Chun Zhu, and Ying Nian Wu. Learning non-convergent non-
persistent short-run mcmec toward energy-based model. Advances in Neural Information
Processing Systems, 32, 2019.

Erik Nijkamp, Mitch Hill, Tian Han, Song-Chun Zhu, and Ying Nian Wu. On the anatomy
of meme-based maximum likelihood learning of energy-based models. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 34, 2020.

Erik Nijkamp, Ruiqi Gao, Pavel Sountsov, Srinivas Vasudevan, Bo Pang, Song-Chun Zhu,
and Ying Nian Wu. MCMC should mix: Learning energy-based model with flow-based
backbone. In International Conference on Learning Representations, 2022.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural
samplers using variational divergence minimization. In Proceedings of the 30th Interna-
tional Conference on Neural Information Processing Systems, pages 271-279, 2016.

Aaron Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray
Kavukcuoglu, George Driessche, Edward Lockhart, Luis Cobo, Florian Stimberg, et al.
Parallel wavenet: Fast high-fidelity speech synthesis. In International conference on ma-
chine learning, pages 3918-3926. PMLR, 2018.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. ICML, 2016.

Georg Ostrovski, Will Dabney, and Rémi Munos. Autoregressive quantile networks for
generative modeling. arXiv preprint arXiv:1806.05575, 2018.

Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Learning latent
space energy-based prior model. arXiv preprint arXiv:2006.08205, 2020.

George Papamakarios. Neural density estimation and likelihood-free inference. arXiv preprint
arXiv:1910.13233, 2019.

Kancharla Parimala and Sumohana Channappayya. Quality aware generative adversarial
networks. In Advances in Neural Information Processing Systems, pages 2948-2958, 2019.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis
with spatially-adaptive normalization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2337-2346, 2019.

Gaurav Parmar, Dacheng Li, Kwonjoon Lee, and Zhuowen Tu. Dual contradistinctive gen-
erative autoencoder. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 823-832, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An impera-
tive style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

227



Stanislav Pidhorskyi, Donald A Adjeroh, and Gianfranco Doretto. Adversarial latent au-
toencoders. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14104-14113, 2020.

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov.
Grad-tts: A diffusion probabilistic model for text-to-speech. In International Conference
on Machine Learning, pages 8599-8608. PMLR, 2021.

Ryan Prenger, Rafael Valle, and Bryan Catanzaro. Waveglow: A flow-based generative
network for speech synthesis. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 3617-3621. IEEE, 2019.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference
on Machine Learning, pages 8821-8831. PMLR, 2021.

Suman Ravuri, Shakir Mohamed, Mihaela Rosca, and Oriol Vinyals. Learning implicit
generative models with the method of learned moments. arXiv preprint arXiv:1806.11006,
2018.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images
with vg-vae-2. Advances in neural information processing systems, 32, 2019.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530-1538. PMLR, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International conference on
machine learning, pages 1278-1286. PMLR, 2014.

Benjamin Rhodes, Kai Xu, and Michael U. Gutmann. Telescoping density-ratio estimation.
In Advances in Neural Information Processing Systems, 2020.

Oren Rippel and Ryan Prescott Adams. High-dimensional probability estimation with deep
density models. arXiv preprint arXiw:1302.5125, 2013.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234-241. Springer, 2015.

Mihaela Rosca, Balaji Lakshminarayanan, and Shakir Mohamed. Distribution matching in
variational inference. arXiv preprint arXiv:1802.06847, 2018.

228



Chitwan Saharia, William Chan, Huiwen Chang, Chris A Lee, Jonathan Ho, Tim Salimans,
David J Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. arXiv
preprint arXiv:2111.05826, 2021a.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mo-
hammad Norouzi. Image super-resolution via iterative refinement. arXiv preprint
arXiw:2104.07656, 2021b.

Mehdi SM Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. As-
sessing generative models via precision and recall. Advances in Neural Information Pro-
cessing Systems, 31, 2018.

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann machines
for collaborative filtering. In Proceedings of the 24th international conference on Machine
learning, pages 791-798, 2007.

Tim Salimans. A structured variational auto-encoder for learning deep hierarchies of sparse
features. arXiv preprint arXiv:1602.0873/4, 2016.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. In Advances in neural information processing
systems, pages 901-909, 2016.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. Advances in neural information pro-
cessing systems, 29, 2016.

Robin San-Roman, Eliya Nachmani, and Lior Wolf. Noise estimation for generative diffusion
models. arXiv preprint arXiv:2104.02600, 2021.

Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and James Hays. Scribbler: Control-
ling deep image synthesis with sketch and color. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5400-5409, 2017.

Matt Shannon, Ben Poole, Soroosh Mariooryad, Tom Bagby, Eric Battenberg, David Kao,
Daisy Stanton, and RJ Skerry-Ryan. Non-saturating gan training as divergence minimiza-
tion. arXw preprint arXiv:2010.08029, 2020.

Paul Smolensky. Information processing in dynamical systems: Foundations of harmony
theory. Technical report, Colorado Univ at Boulder Dept of Computer Science, 1986.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsu-
pervised learning using nonequilibrium thermodynamics. In International Conference on
Machine Learning, pages 2256-2265. PMLR, 2015.

Casper Kaae Sgnderby, Tapani Raiko, Lars Maalge, Seren Kaae Sgnderby, and Ole Winther.
How to train deep variational autoencoders and probabilistic ladder networks. arXiv
preprint arXiv:1602.02282, 3(2), 2016.

229



Jiaming Song, Shengjia Zhao, and Stefano Ermon. A-nice-mc: Adversarial training for
mcme. Advances in Neural Information Processing Systems, 30, 2017.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in Neural Information Processing Systems, 32, 2019.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative
models. arXiv preprint arXiw:2006.09011, 2020.

Yang Song, Conor Durkan, Iain Murray, and S. Ermon. Maximum likelihood training of
score-based diffusion models. arXiv preprint arXiv:2101.09258, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
In International Conference on Learning Representations, 2021b.

Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical
imaging with score-based generative models. In International Conference on Learning
Representations, 2022.

Yuxuan Song, Qiwei Ye, Minkai Xu, and Tie-Yan Liu. Discriminator contrastive diver-
gence: Semi-amortized generative modeling by exploring energy of the discriminator. arXiv
preprint arXiw:2004.01704, 2020b.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles Sutton.
Veegan: Reducing mode collapse in gans using implicit variational learning. Advances in
neural information processing systems, 30, 2017.

Sandeep Subramanian, Sai Rajeswar, Francis Dutil, Christopher Pal, and Aaron Courville.
Adversarial generation of natural language. In Proceedings of the 2nd Workshop on Rep-
resentation Learning for NLP, pages 241-251, 2017.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in ma-
chine learning. Cambridge University Press, 2012.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiw:1312.6199, 2013.

Esteban G Tabak and Cristina V Turner. A family of nonparametric density estimation
algorithms. Communications on Pure and Applied Mathematics, 66(2):145-164, 2013.

Hiroshi Takahashi, Tomoharu Iwata, Yuki Yamanaka, Masanori Yamada, and Satoshi Yagi.
Variational autoencoder with implicit optimal priors. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pages 5066-5073, 2019.

230



Akinori Tanaka. Discriminator optimal transport. In Advances in Neural Information Pro-
cessing Systems, pages 68136823, 2019.

Yee Whye Teh and Geoffrey E Hinton. Rate-coded restricted boltzmann machines for face
recognition. Advances in neural information processing systems, 13, 2000.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein
auto-encoders. arXiv preprint arXiv:1711.01558, 2017.

Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on
Artificial Intelligence and Statistics, pages 1214-1223. PMLR, 2018.

Jakub M Tomczak and Max Welling. Improving variational auto-encoders using householder
flow. arXiv preprint arXiv:1611.09630, 2016.

Dustin Tran, Keyon Vafa, Kumar Agrawal, Laurent Dinh, and Ben Poole. Discrete flows:
Invertible generative models of discrete data. Advances in Neural Information Processing
Systems, 32, 2019.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances
in Neural Information Processing Systems, 33:19667-19679, 2020.

Arash Vahdat, Evgeny Andriyash, and William G Macready. DVAE#: Discrete variational
autoencoders with relaxed Boltzmann priors. In Neural Information Processing Systems,
2018a.

Arash Vahdat, William G. Macready, Zhengbing Bian, Amir Khoshaman, and Evgeny An-
driyash. DVAE++: Discrete variational autoencoders with overlapping transformations.
In International Conference on Machine Learning (ICML), 2018b.

Arash Vahdat, Evgeny Andriyash, and William G Macready. Undirected graphical models
as approximate posteriors. In International Conference on Machine Learning (ICML),
2020.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent
space. In Neural Information Processing Systems (NeurIPS), 2021.

Aéron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew W Senior, and Koray Kavukcuoglu. Wavenet: A
generative model for raw audio. SSW, 125:2, 2016.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances
in neural information processing systems, 30, 2017.

Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence. [EEE
Transactions on Information Theory, 60(7):3797-3820, 2014.

231



Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998-6008, 2017.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661-1674, 2011.

Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solving minimax optimization locally:
A follow-the-ridge approach. arXiv preprint arXiv:1910.07512, 2019.

Ziyu Wang, Shuyu Cheng, Li Yueru, Jun Zhu, and Bo Zhang. A wasserstein minimum veloc-
ity approach to learning unnormalized models. In International Conference on Artificial
Intelligence and Statistics, pages 3728-3738. PMLR, 2020.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681-688. Citeseer, 2011.

Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and Max Welling. Learning likeli-
hoods with conditional normalizing flows. arXiv preprint arXiv:1912.00042, 2019.

Oliver Woodford. Notes on contrastive divergence. Department of Engineering Science,
Unaversity of Oxford, Tech. Rep, 2006.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference
on computer vision (ECCV), pages 3-19, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Zhisheng Xiao, Qing Yan, and Yali Amit. Generative latent flow. arXiv preprint
arXiv:1905.10485, 2019.

Zhisheng Xiao, Qing Yan, and Yali Amit. Exponential tilting of generative models: Im-
proving sample quality by training and sampling from latent energy. arXiv preprint
arXiw:2006.08100, 2020a.

Zhisheng Xiao, Qing Yan, and Yali Amit. Likelihood regret: An out-of-distribution detection
score for variational auto-encoder. Advances in neural information processing systems, 33:
20685-20696, 2020b.

Zhisheng Xiao, Karsten Kreis, Jan Kautz, and Arash Vahdat. Vaebm: A symbiosis be-
tween variational autoencoders and energy-based models. In International Conference on
Learning Representations, 2021a.

232



Zhisheng Xiao, Qing Yan, and Yali Amit. EBMs trained with maximum likelihood are
generator models trained with a self-adverserial loss. In Energy Based Models Workshop
- ICLR 2021, 2021b.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma
with denoising diffusion GANSs. In International Conference on Learning Representations,
2022.

Jianwen Xie, Yang Lu, Song-Chun Zhu, and Yingnian Wu. A theory of generative convnet.
In International Conference on Machine Learning, pages 2635-2644. PMLR, 2016.

Jianwen Xie, Yang Lu, Ruiqi Gao, and Ying Nian Wu. Cooperative learning of energy-
based model and latent variable model via mcmc teaching. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32, 2018.

Jianwen Xie, Zilong Zheng, and Ping Li. Learning energy-based model with variational
auto-encoder as amortized sampler. arXiv preprint arXiv:2012.14936, 2020.

Haowen Xu, Wenxiao Chen, Jinlin Lai, Zhihan Li, Youjian Zhao, and Dan Pei. On the
necessity and effectiveness of learning the prior of variational auto-encoder. arXiv preprint
arXiv:1905.13452, 2019.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariha-
ran. Pointflow: 3d point cloud generation with continuous normalizing flows. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pages 4541-4550,
2019.

Li-Chia Yang, Szu-Yu Chou, and Yi-Hsuan Yang. Midinet: A convolutional generative ad-
versarial network for symbolic-domain music generation. arXiv preprint arXiv:1703.10847,
2017.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao.
Lsun: Construction of a large-scale image dataset using deep learning with humans in the
loop. arXiv preprint arXiv:1506.03365, 2015.

Lantao Yu, Yang Song, Jiaming Song, and Stefano Ermon. Training deep energy-based
models with f-divergence minimization. ICML, 2020a.

Ning Yu, Ke Li, Peng Zhou, Jitendra Malik, Larry Davis, and Mario Fritz. Inclu-
sive gan: Improving data and minority coverage in generative models. arXww preprint
arXiw:2004.03355, 2020b.

Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak Lee. Consistency regularization
for generative adversarial networks. arXiv preprint arXiv:1910.12027, 2019.

Linfeng Zhang, Lei Wang, et al. Monge-amp\ere flow for generative modeling. arXiv preprint
arXiv:1809.10188, 2018.

233



Richard Zhang. Making convolutional networks shift-invariant again. In International con-
ference on machine learning, pages 7324-7334. PMLR, 2019.

Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial net-
work. ICLR, 2017.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation
for data-efficient gan training. Advances in Neural Information Processing Systems, 33,
2020.

Zhengli Zhao, Sameer Singh, Honglak Lee, Zizhao Zhang, Augustus Odena, and Han Zhang.
Improved consistency regularization for gans. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 11033-11041, 2021.

Song Chun Zhu, Yingnian Wu, and David Mumford. Filters, random fields and maximum
entropy (frame): Towards a unified theory for texture modeling. International Journal of
Computer Vision, 27(2):107-126, 1998.

Zachary Ziegler and Alexander Rush. Latent normalizing flows for discrete sequences. In
International Conference on Machine Learning, pages 7673-7682. PMLR, 2019.

234



	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	What are Generative Models?
	Generative Modeling: Motivations
	Generative Modeling: Formalizing the Problem
	Generative Model vs. Discriminative Model

	Important Concepts
	Maximum Likelihood Approach for Training Generative Models
	Density Ratio Approach for Training Generative Models
	Langevin Dynamics
	Evaluation of Generative Models

	High-level Overview of Proposed Methods
	Flexible Prior of Auto-encoder Models
	Exponential Tilting of Generative Models
	EBMs with short-run Langevin Dynamics as Generator Models
	Denoising Diffusion GANs: Expressive Denoising Distribution in Diffusion Models

	Organization

	A Comparative Review of Deep Generative Models
	Variational Auto-encoders
	Preliminaries
	Formulation of VAEs
	Parameterization and Optimization
	Typical issues with VAEs
	Hierarchical VAEs

	Normalizing Flows
	Fundamentals of Normalizing Flows
	Parameterizations of Normalizing Flows
	Applications of Normalizing Flows
	Limitations of Normalizing Flows

	Energy-based Models
	Formulation of EBMs
	Maximum Likelihood Training with MCMC
	Alternative Methods for Training EBMs

	Denoising Diffusion Models
	Formulation of Diffusion Models
	Training Denoising Diffusion Models
	Extension of Diffusion Models to Continuous Time
	Limitations of Diffusion Models

	Generative Adversarial Networks
	Understanding the Training of GANs
	Challenges in Training GANs
	Important GAN variants

	Summary

	Generative Latent Flow: Towards Flexible Prior Distributions in Latent Space
	Motivation and Introduction
	Related Work
	Combining Normalizing Flows with AE-based Models
	VAEs with Normalizing Flow Prior
	Generative Latent Flow

	Experimental Results
	Main Results
	Comparisons: GLF vs. Regularized GLF and VAE+flow Prior
	Experimental Settings
	Settings for training RAE+GMM

	Conclusion

	Exponential Tilting of Generator Models with Energy-based Models
	Motivation and Introduction
	Related Work
	Formulation of Exponential Tilting with EBMs
	Normalizing Flows as the Base Generative Model
	VAEBM: VAEs as the Base Distribution
	Training of VAEBM
	An Extension to the Training Objective of VAEBM

	Experimental Results
	Small VAEs as the Base Model
	Normalizing Flows as the Base Model
	Large Hierarchical VAEs as the Base Model

	Conclusion

	Short-run Langevin Dynamics as Generator Models
	Motivation and Introduction
	Alternative understanding of maximum likelihood training

	Related Work
	Noise-free Sampling Dynamics as Flow Models
	Connection with W-GAN and the generator loss term
	Experimental Results
	2D toy data
	Image Data
	Experimental settings

	Conclusion

	Denoising Diffusion GANs for Accelerating Sampling from Denoising Diffusion Models
	Motivation and Introduction
	Related Work
	Denoising Diffusion GANs
	Parameterizing the Implicit Denoising Model
	Network Design
	Diffusion Process 

	Experimental Results
	Overcoming the Generative Learning Trilemma
	Ablation Studies
	Mode Coverage
	Training Stability
	High Resolution Image
	Additional Results
	Experimental Details

	Conclusion

	Conclusion
	Summary
	Future Work

	References

